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Small networks of cultured hippocampal neurons respond to transient
stimulation with rhythmic network activity (reverberation) that persists
for several seconds, constituting an in vitro model of synchrony, working
memory, and seizure. This mode of activity has been shown theoreti-
cally and experimentally to depend on asynchronous neurotransmitter
release (an essential feature of the developing hippocampus) and is sup-
ported by a variety of developing neuronal networks despite variability
in the size of populations (10–200 neurons) and in patterns of synaptic
connectivity. It has previously been reported in computational models
that “small-world” connection topology is ideal for the propagation of
similar modes of network activity, although this has been shown only
for neurons utilizing synchronous (phasic) synaptic transmission. We in-
vestigated how topological constraints on synaptic connectivity could
shape the stability of reverberations in small networks that also use
asynchronous synaptic transmission. We found that reverberation du-
ration in such networks was resistant to changes in topology and scaled
poorly with network size. However, normalization of synaptic drive, by
reducing the variance of synaptic input across neurons, stabilized rever-
beration in such networks. Our results thus suggest that the stability of
both normal and pathological states in developing networks might be
shaped by variance-normalizing constraints on synaptic drive. We offer
an experimental prediction for the consequences of such regulation on
the behavior of small networks.
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1 Introduction

Persistent rhythmic network activity is observed in a wide variety of exper-
imental preparations (O’Donovan, Chub, & Wenner, 1999; Segev, Shapira,
Benveniste, & Ben-Jacob, 2001; Beggs & Plenz, 2004; Lau & Bi, 2005), sug-
gesting that it may represent a ubiquitous motif to store and transmit
information in the nervous system (Sejnowski & Paulsen, 2006). A va-
riety of models have described the initiation and sustenance of persis-
tent activity (Tabak, Senn, O’Donovan, & Rinzel, 2000; Tsodyks, Uziel, &
Markram, 2000; Tegner, Compte, & Wang, 2002; Volman, Baruchi, Persi, &
Ben-Jacob, 2004), however, most of these models operate under the assump-
tion that the underlying pattern of synaptic connectivity is randomly uni-
form. However, experimental data suggest that neuronal networks possess
ultrastructural organizational motifs (Shefi, Golding, Segev, Ben-Jacob, &
Ayali, 2002; Segev, Baruchi, Hulata, Shapira, & Ben-Jacob, 2004; Song,
Sjostrom, Reigl, Nelson, & Chklovskii, 2005) in which the probability or
strength of synaptic connections exhibits a highly nonrandom correlation
structure. Because such topological structure influences dynamics (Sporns,
Tononi, & Edelman, 2000; Wang, Poe, & Zochowski, 2008; Baruchi, Vol-
man, Shein, Raichman, & Ben-Jacob, 2008; Raichman & Ben-Jacob, 2008),
the dependence of emergent persistent activity patterns on the topology of
synaptic connectivity requires investigation (Pham, Pakdaman, Champag-
nat, & Vibert, 1998; Izhikevich, Gally, & Edelman, 2004; Volman, Baruchi, &
Ben-Jacob, 2005).

One model for persistent network activity is reverberation—the capac-
ity of activity in a neuronal network to transiently store information about
preceding sensory stimuli (de No, 1933; Hebb, 1949). In small networks
of cultured hippocampal neurons, transient electrical stimulation of a sin-
gle neuron can lead to correlated activity across the entire network last-
ing for seconds (Lau & Bi, 2005), whereas spontaneous network activity
is exceedingly rare. Such evoked activity patterns are reminiscent of the
canonical cell assembly proposed to underlie working memory (Hebb,
1949), but it also bears resemblance to experimental models of electro-
graphic seizure (Traub, Borck, Colling, & Jefferys, 1996). In either case,
hypotheses concerning the relationship between synaptic connectivity and
population activity can be tested in spontaneously organizing biological
networks.

In contrast to some working memory models in cortical networks (Wang,
1999; Buzsaki, 2006), reverberations are oscillatory, reflecting an alternation
between synchronous firing and quiescence (see Figures 1A and 1B), and
do not require the activation of inhibitory interneurons. However, for the
reverberatory oscillation to be sustained across cycles without terminating,
asynchronous release (AR) of neurotransmitter from presynaptic terminals
is required (Lau & Bi, 2005). AR is abundant at developing synapses in
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the hippocampus and other brain areas (Goda & Stevens, 1994; Atluri &
Regehr, 1998; Lu & Trussell, 2003; Hagler & Goda, 2001; Otsu et al., 2004;
Hefft & Jonas, 2005) and may act as a form of synaptic noise. In contrast
to synchronous or phasic release, which occurs shortly after the action
potential invades the presynaptic terminal, asynchronous release persists
for hundreds of milliseconds following synaptic stimulation. These two
forms of neurotransmitter release differ in timescale (phasic release � AR)
(Goda & Stevens, 1994), presynaptic free calcium affinity (phasic release
� AR) (Ravin, Spira, Parnas, & Parnas, 1997) and molecular mechanisms
(Saraswati, Adolfsen, & Littleton, 2007; Sun et al., 2007; Nishiki & Augus-
tine, 2004). Previous investigations of topology-dependent persistent net-
work activity utilizing only phasic neurotransmission (Wang, 1999; Izhike-
vich et al., 2004; Netoff, Clewley, Arno, Keck, & White, 2004; Roxin, Riecke,
& Solla, 2004; Volman et al., 2005) are unlikely to capture the dependence
of reverberation on synaptic parameters, primarily because AR can delay
and decorrelate the excitation of postsynaptic partners from presynaptic
spikes.

The experimentally observed abundance and diversity of networks that
both reliably exhibit long-lasting reverberations evoked by a single action
potential and do not exhibit spontaneous activity suggest that some biologi-
cal constraint leads developing networks to a regime in which reverberation
is nearly bistable: hard to trigger but easy to maintain. Previously we con-
structed a biophysical model to describe reverberation (Lau & Bi, 2005;
Volman, Gerkin, Lau, Ben-Jacob, & Bi, 2007). In this model, we showed how
it is sustained by the activity-dependent elevation of AR and both oscillates
and terminates due to synaptic depression. We also showed that in random
networks, stimulus-specific, AR-mediated reverberation could be sustained
only under conditions of proper balance between the strengths of AR and
phasic release. However, such fine-tuning is incompatible with the obser-
vation of reverberation in a diversity of networks, and so we ask whether a
topological constraint on synaptic connection probabilities might serve to
explain the observed robustness of AR-mediated reverberation. It has been
reported that specific topologies, such as the small-world network architec-
ture thought to be efficient for the propagation of network activity (Netoff
et al., 2004; Roxin et al., 2004), might be important in this regard. However,
we find that reverberation is largely invariant to such constraints on synap-
tic connection probabilities. In contrast, a constraint on the strength of input
to each neuron, reflecting synaptic homeostasis, provides a robust mecha-
nism to guarantee stimulus-evoked reverberation and abolish spontaneous
reverberation across a range of networks. This results from the suppression
of statistical fluctuations in synaptic connectivity, suggesting that the effects
of synaptic scaling on small networks may be realized not through control
over the mean value of synaptic input, as typically assumed, but over its
variance.



930 V. Volman and R. Gerkin

2 Methods

2.1 Synaptic Kinetics and Asynchronous Transmitter Release. As in
our previous report (Volman et al., 2007), we adapted and expanded a
canonical model of the vesicle cycle (Tsodyks et al., 2000) and assumed
that synaptic resources are trafficked among four states: X (available), Y
(active), Z (recycled), and S (inactive) at each model presynaptic terminal.

Figure 1: Presynaptic calcium-driven asynchronous neurotransmitter release
and short-term depression underlie network reverberations. (A) Postsynaptic
current recorded from a cultured hippocampal neuron in a small (≈100 neu-
rons) network in response to a transient (2 msec) suprathreshold input delivered
to another neuron (stimulation time marked with arrow). Recurrent synaptic
activity can be observed in the recorded neuron at increasing intervals, lasting
for seconds. (B) Membrane voltage dynamics of simultaneously recorded neu-
ron in the same network. (C) Schematic presentation of the synaptic dynamics
model used in this work, elaborated from Tsodyks et al. (2000) and described
in Volman et al. (2007). Synaptic resource (excitatory neurotransmitter) traffics
between four states in an activity-dependent manner: X (recovered, ready for
release), Y (active, bound to postsynaptic receptors), Z (recycled, unbound or
uptaken), and S (inactive, a longer route to recovery). Postsynaptic currents are
generated at times tSP and tAR that describe the occurrence of action potential–
driven (phasic) and asynchronous release (AR) events, correspondingly.
(D, E) The rate of AR depends on presynaptic calcium concentration, which
is a function of previous action potential times. The calcium dependence of the
rate of AR determines whether a model network will respond to a brief stim-
ulation with persistent reverberatory activity lasting for seconds, composed of
dozens of approximately 50 ms polysynaptic current (PSC) clusters (D, upper
panel, ηmax = 0.3), or a single PSC cluster with no further network activity, as in
E, upper panel, ηmax = 0. Stimulation times marked with an arrow. Compare to
Lau and Bi (2005) for experimental analogs of each scenario. The dynamics of
presynaptic calcium (middle panels) and the slow synaptic depression variable
S (lower panels) at model synaptic terminals are shown. In the case of a rever-
beratory response (D), recurrent network activity is terminated when a critical
fraction of synaptic resource has accumulated in the inactive state (S), acting as
a sink to deprive synapses of sufficient efficacy to drive the next PSC cluster.
(F) In the course of model network reverberation, the neuronal membrane re-
mains depolarized, and each model neuron generates 0–1 spikes per PSC cluster,
as in the experimental analog (B; Lau and Bi, 2005). (G) Raster plot of model net-
work activity, showing that during the PSC clusters, most of the model neurons
are engaged in collective, highly correlated activity, ruling out the possibility
that the reverberatory response is due to the circulation of activity in the net-
work with a return time ≈ 1/rate. Only AR, not spike-locked phasic release, can
bridge the gap between PSC clusters. In all model cases shown, the probability
of establishing a unidirectional connection between a pair of model neurons
was p = 0.1.
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The equations that govern the exchange of resource between these states
are:

d X
dt

= S
τS

+ Z
τR

− uXδ(t − tSP ) − ξ Xδ(t − tAR)

dY
dt

= − Y
τD

+ uXδ(t − tSP ) + ξ Xδ(t − tAR) (2.1)

d Z
dt

= Y
τD

− Z
τR

− Z
τL

d S
dt

= Z
τL

− S
τS

.

As each action potential invades the presynaptic terminal (at time tSP ), a
fraction 1 − exp(−u) of available synaptic resource is transferred from the
available X-state to the active Y-state (corresponding to release and subse-
quent binding to postsynaptic receptors), from where it rapidly decays to
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the recycled Z-state (corresponding to uptake). Once in the Z-state, synap-
tic resource can directly recover to the X-state on a relatively fast (hundreds
of milliseconds) timescale τR. A small fraction of resource leaks from the Z-
state to the inactive S-state (which models slow synaptic depression) from
where it recovers slowly (τS = 8 s). Thus, the Z → X and the S → X transi-
tions jointly model the observed multiple timescale recovery from synaptic
depression (Ghandi & Stevens, 2003). Transitions of synaptic resource be-
tween different functional states are shown schematically in Figure 1C. Note
that the postsynaptic currents due to either phasic or asynchronous release
decay with the same timescale (τD = 5 ms).

In addition to phasic transmission, neurotransmitter is also released from
biological synapses in a manner that is more weakly correlated with the
time of the presynaptic action potential—the so-called asynchronous release
(AR) (Goda & Stevens, 1994; Ravin et al., 1997; Lu & Trussell, 2003; Kirischuk
& Grantyn, 2003). In our model, we assume that such spontaneous events
of stochastic normally distributed amplitude ξ are generated at times tAR

with the calcium-dependent rate η([Ca2+]r ):

η([Ca2+]r ) = ηmax
([Ca2+]r )m

km
a + ([Ca2+]r )m

. (2.2)

In equation 2.2, ηmax is the maximal rate of asynchronous synaptic trans-
mission, and so η([Ca2+]r )dt is the probability that AR will occur in the
time interval [t, t + dt]. This empirical relationship between the concentra-
tion of residual presynaptic calcium, [Ca2+]r , and the rate of AR has been
measured for large presynaptic terminals (Ravin et al., 1997; Kirischuk &
Grantyn, 2003), but evidence from detailed computational studies of synap-
tic microphysiology indicates that it may also hold for central synapses with
a small active zone (Nadkarni, Bartol, Sejnowski, & Levine, 2010).

To complete the specification of the synaptic model, we provide the
equation that handles the presynaptic residual calcium:

d[Ca2+]r

dt
= −β([Ca2+]r )n

K n
p+([Ca2+]r )n

+γ log
(

[Ca2+]out

[Ca2+]r

)
δ(t − tSP )+Ip. (2.3)

In equation 2.3, the first term represents the extrusion of residual presy-
naptic calcium by an active pump. The amount of calcium that is deposited
at the model presynaptic terminal following action potentials is approxi-
mated to be proportional to the calcium reversal potential across the synap-
tic membrane, with a proportionality constant γ (see the appendix for an
explanation of this approximation). The extracellular calcium concentration,
[Ca2+]out , is taken equal to 2 mM. The term Ip is added in order to provide
a biophysically plausible steady-state calcium concentration (50 nM) in the
absence of any action-potential related activity.
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2.2 Stimulus-Induced Network Reverberations. In previous experi-
ments with cultured hippocampal neurons (Lau & Bi, 2005; Lau & Bi,
unpublished observations, 2010), a transient suprathreshold stimulus was
delivered intracellularly to a single neuron. The resulting spike times across
the network ensemble were determined with low-affinity calcium dyes,
and recurrent synaptic activity was simultaneously measured in two intra-
cellularly recorded neurons. Both measurements indicated that recurrent
activity typically lasted for either a short period of time (≈100 ms) or for
several seconds after the transient stimulus. In the latter case, it exhibited
a characteristic decaying oscillation that self-extinguished when it fell be-
low a critical amplitude. Reverberation was defined to be an episode of
this recurrent activity lasting for more than 500 ms and terminating when
either population spiking or synaptic current fell below half of its peak
value during the episode (Lau & Bi, 2005). Critically, during each reverber-
ation, the overwhelming majority of synaptic transmission events recorded
in the trough of the oscillation (assessed electrically) were not cotemporal
with spikes in other neurons (assessed optically), despite negligible levels
of (spontaneous) synaptic activity prior to the stimulus. Consequently, AR
was responsible for this synaptic activity that bridged the oscillation cy-
cles. We developed a model (Volman et al., 2007) of randomly connected
neurons with synaptic and excitability parameters calibrated against these
experimental data (Lau & Bi, 2005), and other sources as cited below, and
as given in the appendix (see Table 1). Delays in synaptic conduction for
this small, spatially compact circuit were negligible (R.C.G., unpublished
observations) and thus were not taken into account. Also, because experi-
mental reverberations did not require inhibitory neurotransmission (Lau &
Bi, 2005), we studied networks composed of only excitatory neurons.

In model simulations, a brief (5 ms) and strong (50 μA·cm−2) stimulus
was delivered to one neuron. The response of the model network depends
on the level of AR at its synapses. For sufficiently high levels of AR (see
Figure 1D, upper panel, ηmax = 0.3), the network can sustain reverberation;
this ability is lost when asynchronous release is blocked (see Figure 1E, up-
per panel, ηmax = 0), as observed experimentally (Lau & Bi, 2005). In turn,
as Figures 1D and 1E (middle panels) show, activation of AR is caused by
sustained elevation of presynaptic free calcium concentration. After fast
synaptic depression terminates a single cycle of recurrent synaptic activ-
ity (see Figure 1D, upper panel, each sharp vertical transient = one cycle,
≈ 100 ms width), there is no subsequent suprathreshold depolarization,
and thus no spikes in the network, for hundreds of milliseconds (see Figure
1G), as in experiment (Lau & Bi, 2010). Since there are no spikes, and thus no
evoked neurotransmitter release to sustain network activation, only AR can
sustain synaptic current in the network until the recovery from synaptic de-
pression spawns the next cycle (intercycle interval: 100–500 ms = 2–10 Hz),
thus bridging the gap that fast, evoked synaptic transmission alone can-
not (Wang, 1999). Eventually reverberations in model networks terminate
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when the slow accumulation of synaptic depression (increase in S) reaches
a critical value, leaving insufficient synaptic resource to drive another cycle
of the reverberation (see Figures 1D, 1E, lower panels). Thus, in randomly
connected networks of excitatory neurons with synaptic depression, AR
critically determines the potential for and form of persistent activity. In
model and experiment with sufficient AR, it takes the form of reverberation.

2.3 Construction of Network Topology

2.3.1 Networks with Random Synaptic Connectivity. Unless otherwise in-
dicated, we assume a random-graph-like topology. That is, the probability
that pi j will establish a unidirectional contact between a pair of neurons i
and j (i �= j) is constant pi j = p0. Then the probability that a neuron in a
network containing N neurons has k incoming contacts is described by a
binomial distribution: P(k, N, p0) = N!

(N−k)!k! pk
0(1 − p0)N−k−1 if p0 is indepen-

dent of N. Given this, the expected number of synaptic contacts per neuron
is 〈k〉 = p0 N, such that the overall mean synaptic drive (overall synaptic
conductance) per neuron is higher for larger networks. To focus on the
variability in the number of presynaptic partners rather than variability of
individual synaptic weights, we drew the maximal synaptic conductances
for each synapse from a normal distribution truncated at ±20% around its
mean (Tsodyks et al., 2000; Volman et al., 2007). Values of parameters for
this distribution are given in the appendix.

2.3.2 Networks with Correlated Connectivity. Networks of neurons con-
nected by unidirectional synapses can be approximated as directed graphs
(Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). To capture the effect
of a graph’s structure on the dynamics of a graph’s vertices (neurons), one
can use topological correlation as the measure of similarity in connectivity
between neurons. In general, the information about topological correla-
tions between the vertices (neurons) of a directed graph can be captured
by the network-averaged clustering coefficient, C , defined as 1

N �i
P̃{ei j ,eil ,e jl }

ki (ki −1) ,
where ki is the in-degree, or number of (synaptic) inputs, for the ith neuron;
P̃{ei j , eil , e jl} is the number of all connected pairs of neurons e jl that are also
inputs to the ith neuron; and averaging is performed over all neurons of a
network. It is possible to show analytically that in the limit of a very large
random graph, in which connections are chosen independently and the av-
eraged number of inputs per neuron is kept constant, C → 0 (Dorogovtsev
& Mendes, 2002). Furthermore, the network-averaged minimal path length
between a pair of neurons L , representing the ability of two neurons to
communicate with low latency, is small for random graphs. By contrast,
in a regular lattice where neurons connect only to their nearest neighbors,
C is large, representing a highly clustered network, but L is large as well,
indicating that signaling between any two neurons may require a large num-
ber of steps. Small world networks (Watts & Strogatz, 1998; Dorogovtsev &
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Mendes, 2002; Roxin et al., 2004) represent a compromise between random
and regular graphs. In small-world networks, C is high (compared with
random graphs) but L is low (compared with regular graphs) (see Figures
3A and 3B), and this combination is believed to play an important role in the
regulation of signal propagation (Dorogovtsev & Mendes, 2002; Boccaletti
et al., 2006). For example, it has been suggested (Buzsaki, Geisler, Hense, &
Wang, 2004; Buzsaki, 2006) that in networks of hippocampal neurons, the
small-world features in the connectivity of inhibitory neurons might enable
fast and efficient control of pathological hyperexcitation associated with
epileptic-like dynamics. On the other hand, small-world connectivity facil-
itates seizing in a model of hippocampal networks (Netoff et al., 2004) and
in epidemic networks can underlie the fast spread of disease and massive
contamination (Dorogovtsev & Mendes, 2002).

Various methods exist to construct a small-world network starting from a
completely regular graph (Watts & Strogatz, 1998; Dorogovtsev & Mendes,
2002; Roxin et al., 2004; Netoff et al., 2004). Here, we have chosen to ma-
nipulate topology in a way that leaves 〈k〉 unchanged, to avoid conflating
the effects of changes in mean synaptic drive with changes in topology. We
start from a k-regular graph in which model neurons are arranged on a
ring, and each neuron is bidirectionally connected to its k nearest neighbors
on the ring (k ≥ 2 and even). Next, all synaptic connections are subject to
random rewiring with the probability qr . The extent of a network being
“small world” depends on the value of rewiring probability. In the limit
of qr → 1, the rewiring procedure is analogous to a complete reshuffling
of the initial set of links, and it transforms the highly correlated k-regular
graph into a random graph with the same average number 〈k〉 of synaptic
inputs to each model neuron but a very low clustering coefficient (Watts
& Strogatz, 1998). Networks with a small-world structure are obtained for
intermediate values of qr (see Figures 3A and 3B).

2.3.3 Homeostatic Regulation of Neuronal Firing Rate. In order to generate
a plausible synaptic scaling rule, we performed network simulations with
synaptic modifications determined by a simple realization of homeostasis,
according to which the synaptic input weights to each neuron were pe-
riodically adjusted to bring that neuron closer to a target firing rate, ν0.
Since homeostatic processes may operate on a very slow (hours to days)
timescale, it is not computationally tractable to model the actual timescale in
network models across a range of parameters. Therefore, we approximated
the dynamic action of homeostatic constraints in the following way: at time
T = 0, one of the network’s neurons was given a brief stimulus (50 μA·
cm−2 for 5 milliseconds), and the response of all neurons was monitored
for a period of time (T = 15 s). The values of synaptic conductances were
then adjusted according to the following equation:

wi j = wi j + αH(ν0 − 〈νi 〉)wi j , (2.4)



936 V. Volman and R. Gerkin

where 〈νi 〉 is the averaged firing rate of a postsynaptic neuron i during
the time window of 15 second and αH(=10−3) is the rate of adjustment.
The stimulation, monitoring, and adjustment of weights operationally de-
fined one epoch of homeostasis and were repeated, with one stimulus per
epoch, until the network reached its target firing rate ν0 over one epoch. By
performing these simulations, we verified that, starting from randomly dis-
tributed subthreshold weights, homeostatic regulation of the firing rate led
model networks to exhibit reverberations (see Figure 6). This homeostatic
rule scaled initially random synaptic weights according to postsynaptic fir-
ing rates. Since initial postsynaptic firing rates are highly correlated with
the summed synaptic input, we made the assumption that directly scaling
synaptic weights according to summed synaptic input could approximate
the results of a dynamic homeostatic process.

2.3.4 Networks with Scaled Synaptic Drive. In this set of simulations, we
scaled synaptic drive according to one of two rules. In the first scenario,
we set the probability of a synaptic connection to be inversely related to
network size, p0 ∝ N−1, such that the mean input number, 〈k〉, was constant
for all sizes (see Figure 4); we refer to this scheme as network scaling. The
alternative scenario, cell-specific scaling, is identical with the exception of
a constraint: the total synaptic input strength per neuron is forced to be
constant (see Figure 6). Denoting by Wi the overall synaptic strength as
seen by the ith postsynaptic neuron due to its ki presynaptic partners, the
constraint is

Wi = constant =
ki∑
j

wi j , (2.5)

in which wi j is the maximal conductance, or strength, of a synaptic con-
nection between i and j . The scaling was implemented by multiplicative
scaling each wi j to achieve constant Wi . For constant p0, this would imply
N−1 weakening of average synaptic strength, 〈wi j 〉. Because 〈wi j 〉 is ob-
served experimentally to scale as N−a , with a > 0 (Wilson, Ty, Ingber, Sur, &
Liu, 2007), this scenario represents an example of network size–dependent
scaling of synaptic weights.

To generate the actual synaptic connectivity and weight patterns for
model networks, we considered a variety of distributions for pi j . The first
case, pi j = p, represents random connectivity and a binomial distribution
for the number of presynaptic partners, k, for each neuron. A binomial dis-
tribution characterized by (N, p) has standard deviation σk = √

Np(1 − p)
and as N → ∞ follows a gaussian distribution according to the de Moivre-
Laplace theorem. To deviate from random connectivity and account for
additional inhomogeneity in synaptic targeting (e.g., variations in the elab-
oration of dendritic trees), we also considered distributions more variable
than a binomial. We implemented this by drawing the number of inputs ki
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from gaussian distributions (truncated to obtain integer values for actual
ki ) with values of σk greater than that observed in the binomial distribu-
tion, but still restricted to the range [1, N − 1], the minimum and maximum
number of possible presynaptic partners. With this restriction, the limit
of σk → ∞ corresponds to a uniform distribution for k. For each of these
possible distributions, we enforced the same scaling rule as above.

Greater values of σk imply broader distributions of k and more hub neu-
rons with many inputs; however, the scaling rule causes each synaptic input
to a hub to be relatively weak. By the same token, for large values of σk ,
some neurons receive a small number of relatively strong connections (see
Figure 5A). The efficacy of these two kinds of input (numerous and weak
versus scarce and strong) in evoking postsynaptic spikes will depend on the
total magnitude and distribution of these inputs (Brunel, 2000), the spike
thresholds, and the instantaneous activity of presynaptic neurons. The last
of these can be expected to vary during the course of a reverberation as
the number of neurons participating quickly increases and then slowly de-
clines (on a timescale of seconds) and as the dominant mode of synaptic
transmission switches between phasic release and AR (on a timescale of
hundred of milliseconds). For a scaled postsynaptic neuron that receives
c 〈k〉 afferents of weight 〈w〉 /c each, firing at the Poisson rate ν, the stan-
dard deviation of the postsynaptic current in a fixed time interval [t, t + �t]
is given by σI (c) = 〈w〉c−1/2

√〈k〉ν�t(1 − ν�t). Since we here consider net-
works composed of only excitatory neurons, a smaller value of σI (c) implies
less frequent crossing of a threshold for spike generation. Thus, counterintu-
itively, neurons receiving relatively numerous inputs (c > 1) may, by virtue
of the scaling rule, spike less reliably during a noise-driven spiking regime
(see Figures 5E–5I). Consequently, the connectivity scheme described offers
a tool for investigating differences in phasic release and AR in determining
network dynamics.

3 Results

The core model was presented in Volman et al. (2007). There, we investi-
gated the dependence of reverberation characteristics on biophysical pa-
rameters related to presynaptic dynamics and calcium handling. In the
study reported in this article, motivated by literature suggesting that net-
work topology dictates network activity patterns, we asked whether the
topology of model networks had a role in the generation or sustenance of
reverberation.

3.1 Duration and Frequency of Evoked Reverberations Depend on the
Mean Number of Synaptic Inputs per Neuron. In small, cultured hip-
pocampal networks (Lau & Bi, 2005), neurons are confined to a fixed area
(≈1 mm diameter) on a glass coverslip. The number of neurons in these
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Figure 2: Duration of evoked reverberations in small networks with random
synaptic connectivity. (A) Distribution of neuron counts in small networks of
cultured neurons in which reverberation experiments were typically performed.
(B) Duration of evoked reverberatory activity in cultured networks increases
with increasing network size (p < 0.1). However, duration varies greatly even
for networks of similar size (r 2 < 0.1). (C) Duration of reverberatory activity in
model networks versus network size for a simple binomial connectivity rule
with constant connection probability p. Scatter plot shows outcomes of sev-
eral independent realizations, and solid line is the average over 20 realizations.
Duration depends more strongly on network size in simulation (C) than in
cultured networks (B) and is more variable, suggesting that this simple connec-
tivity model cannot account for the data. (D) Rate of PSC cluster generation in
cultured networks versus the network size. (E) Rate of PSC cluster generation
in model networks versus the network size.

small networks varies with each coverslip and each culture (see Figure 2A),
as do the characteristics of reverberation. Thus, our first hypothesis was
that the size of the population was the primary determinant of reverber-
ation characteristics. To test this hypothesis, we constructed networks of
various sizes but with a fixed value of the synaptic connection probability
pi j = p0, that is, a random network.

We observed that in both cultured and model networks, reverberation
duration was positively correlated with the population of the network (see
Figures 2B and 2C, respectively). The naive assumption of constant p im-
plies a greater number of synaptic inputs per neuron in larger networks
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and a greater recurrent drive at all time points. We previously showed
that reverberation terminates when slow synaptic depression (see Figure 1:
Z → S) exceeds the capacity of recurrent synaptic activity to generate the
next oscillation cycle (Volman et al., 2007). With stronger recurrent drive, it
follows that a deeper depression is required for this to occur, which takes
longer to accumulate. Thus, under constant p, larger networks should have
longer reverberations. Furthermore, while the constant p assumption im-
plies greater phasic release and greater AR in larger networks, these are not
matched in time. In between cycles of recurrent activity, phasic release is
nearly zero while AR is high. The higher the strength of AR, the less time
must pass before synapses are sufficiently recovered from fast synaptic de-
pression (see Figure 1: Z → X) for AR to trigger the next cycle of recurrent
activity. Thus, in larger networks where AR is stronger, one might expect
reverberations to occur at higher oscillation frequency. While this trend was
observed in the model (see Figure 2E), the data exhibited no such relation-
ship (see Figure 2D). Thus, the constant p assumption failed to explain the
relatively invariant character of reverberation as a function of population
size.

3.2 Duration of Persistent Activity Is Not Affected by Network Topo-
logical Correlation. Furthermore, the diversity of durations and rates, even
around a given population size, was substantially greater in experimen-
tal networks than in model networks. What could account for this diver-
sity? The level of development of experimental networks was very similar
(± 1 day), so it seemed unlikely that fundamental biophysical parameters
would vary across these networks. We hypothesized that the variability in
synaptic connection topology from network to network might account for
the variability in reverberation characteristics. For example, networks with
well-placed hubs that coordinate long-lasting activity might be expected to
exhibit reverberations of greater duration. Furthermore, it has been shown
in networks with purely phasic release that the topology of connectivity is
a primary determinant of the exhibited modes of network activity (Netoff
et al., 2004; Roxin et al., 2004; Volman et al., 2005). However, since the AR
of the neurotransmitter evidently changes the rules for the propagation of
activity, it is unclear whether the same topological considerations should
hold in circuits where AR is a central feature.

We analyzed the dynamics of networks with fixed population size but
connectivity architecture ranging from purely regular lattices, through
small-world topologies, to randomized graphs that do not exhibit topologi-
cal correlations. The transition between different architectures is controlled
by varying the value of a hypothetical rewiring probability for synaptic con-
nections, qr , which indicates the degree to which links have been shuffled
from a perfectly regular lattice (see section 2). This rewiring is not a pro-
posed mechanism for the construction of real networks, but rather a tool to
achieve a wide range of network topologies by varying a single parameter.
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For low values of qr , both the correlation between edges (the tendency to
form connectivity triangles; Dorogovtsev & Mendes, 2002, as captured by
clustering coefficient C) and the minimal synaptic path length L between a
pair of neurons are high. For high values of qr , connectivity is nearly ran-
dom, so the network has a short minimal path length but also a low edge
correlation. Intermediate values of qr result in small-world networks, with
a large number of connectivity triangles but short minimal path lengths, in
principle enabling efficient spread of activity.

To assess whether any particular network topology (such as small-world
architecture) facilitated reverberation, we initialized networks with a fixed
number of inputs 〈k〉 per neuron and randomly rewired synaptic connec-
tions to obtain each topology. Figure 3 shows the dependence of evoked
reverberatory activity on the rewiring probability qr . For graphs ranging
from almost regular (left) through small-world (middle), to nearly random
(right), we found that neither the duration of reverberation nor the rate of
PSC clusters (i.e. oscillation frequency) within a reverberation showed any
indications of strong dependence on the value of qr (see Figures 3C and 3D).
Instead, the duration of rhythmic network activity was strongly dependent
on the mean number of synaptic inputs 〈k〉 = np0, while the rate showed
no clear dependence on 〈k〉. Thus, the experimentally observed diversity in
reverberation durations and rates could not be ascribed to the variation in
the topological organization of cultured networks. Instead, this suggested
that in these networks, the overall synaptic drive, rather than topological
correlations, was the primary determinant of reverberation characteristics.

3.3 Synaptic Connectivity Scaled by Network Size. Increases in net-
work size may increase the number of distinct synaptic partners per neu-
ron, thus enhancing the frequency and duration of reverberation. As net-
work size increases, it is not uncommon in experiments to observe both
stimulus-evoked reverberation that transforms into chaotic activity that
never terminates, spontaneous reverberation, or other modes of network
activity (Eytan & Marom, 2006; Gerkin, Lau, & Bi, 2010). The likelihood of
observing such behavior is increased by manipulations that augment the
strength of synaptic connections. In fact, such behavior is a hallmark of
the hippocampal culture model of seizure (Furshpan, 1991). Thus, our next
goal was to identify the origins of such dynamical instabilities in both the
quiescent and the reverberatory states in larger model networks. In other
words, why do spontaneous reverberations start, why do stimulus-evoked
reverberations end, and why do these phenomena depend on network size?
In the constant p case, neurons in larger networks receive more synaptic
input than neurons in smaller networks. This offers a trivial explanation
of the instability of the quiescent state: the probability of spontaneous ac-
tivation of a fraction of the neurons, triggering network activity, would
scale with network size. However, experimental evidence suggests that the
synaptic connection probability between any two neurons may decrease as
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Figure 3: Reverberation is insensitive to connection topology. (A, B) As the
value of synaptic rewiring (shuffling) parameter, qr , is increased, both the net-
work clustering coefficient C (A) and mean minimal path length L (B), de-
crease. Top: These topology changes are shown for networks with N = 500;
circles: number of inputs per neuron k = 20; squares: k = 14. Bottom: The same
changes are illustrated with three selected values of qr in N = 20 networks (for
clarity), showing the transition from regular graph (left), to small-world net-
work (middle), to random graph (right) as qr increases. (C) Duration of evoked
reverberation depends on k, not qr . Squares, k = 14; triangles, k = 16; diamonds,
k = 18; circles, k = 20. (D) The frequency of PSC clusters is also insensitive to qr

over a wide range of values through the space of possible network topologies.
All data points are averages over 20 independent realizations for networks with
N = 500.
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Figure 4: Connectivity fluctuations destabilize networks with fixed input num-
ber. (A) Raster plot of evoked activity (stimulus applied at Tstim = 0 sec) for a
small network (N = 50). The reverberatory response to the stimulus is char-
acterized by rhythmic activity with clearly separated epochs of spikes. In
A–D, right panel shows the interval between spike clusters. (B) Raster plot
of evoked activity for a larger network (N = 100), with connection probabil-
ity p reduced to preserve the same mean input synapse count as in (A). This
network sustains evoked reverberations with a much lower oscillation period.
(C) For still larger networks (N = 500), a spontaneous outbreak of activity is
observed even though p has been further reduced to ensure a constant mean
synaptic input count. (D) Increasing the neuronal membrane leak conductance,
gleak , reduces the sensitivity of model neurons to the statistical fluctuations in
synaptic drive, and restores rhythmic reverberations. In all simulations, the av-
eraged number of inputs per neuron is 〈k〉 = Np = 20. In panels A, B, and D,
the stimulation time is marked with arrowhead.

population size is increased (Wilson et al., 2007). Thus, we examined model
networks in which the mean number of incoming synaptic connections per
neuron, 〈k〉, was held constant. For a network of N neurons, we assumed
that the probability of establishing a unidirectional connection between a
pair of neurons is p0 = 〈k〉N−1. While the mean number of inputs per neu-
ron remains constant as network size increases, each neuron still receives a
variable number of inputs.

With such a constraint, small networks reliably generate reverberations
that persist for several seconds (see Figure 4A), which then decay due to
the accumulation of slow, synaptic depression. As network size increases,
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with 〈k〉 held constant and p0 ∝ N−1, more prolonged reverberations with
a higher rate of PSC cluster appearance are exhibited, as in the constant p
case (see Figure 4B). Despite the constraint of constant 〈k〉, for sufficiently
large networks, spontaneous activity emerges in the absence of stimulation
(see Figure 4C). Because the distribution of afferents per neuron has a mean
p0 N = 〈k〉 and a variance p0 N(1 − p0) = 〈k〉(1 − 〈k〉N−1) , the statistics of all
networks with identical 〈k〉 and for which N � 〈k〉 would appear to be sim-
ilar. However, as network size increases, there is an increasing probability
that at least one or a few postsynaptic neurons will have a sufficient num-
ber of presynaptic partners releasing neurotransmitter to exceed a firing
threshold. This results in an increase in the probability that one or a small
number of action potentials can recruit activity throughout the network,
resulting in shorter waiting times between PSC clusters, and thus a higher
reverberation frequency. This also results in an increased probability that
the first PSC cluster can be generated from rest due to the spontaneous
release of neurotransmitter (see Figure 5C, gray bars). In support of this
explanation, both spontaneous reverberation and nonreverberatory activ-
ity disappeared when membrane conductance was increased (see Figure 4D
for an arbitrarily long monitoring time before stimulation at Tstim = 0 s), or
when the fluctuations in the connectivity pattern were eliminated by forcing
each neuron to receive exactly 〈k〉 afferents (results not shown). Thus, in a
network tuned to respond to a stimulus by reverberating, random fluctu-
ations in synaptic connectivity resulting from binomial statistics can have
a large effect on reverberation frequency, bringing the activity to the point
of dynamical instability as the network size increases, even when the mean
synaptic input is made invariant to network size.

3.4 Synaptic Connectivity Scaled by Synaptic Input. How can the re-
verberatory dynamical response of a large network be ensured, and sponta-
neous activity be avoided, in the face of statistical fluctuations in the number
of inputs per cell? It has been established that individual neurons employ
homeostatic regulatory processes on multiple timescales that enable them
to constrain synaptic input and output firing rates within reasonable limits
(Turrigiano, 1999, 2008). Indeed, a cell-specific form of synaptic homeosta-
sis, synaptic scaling has been widely reported (Turrigiano, 1999, 2008). It
is hypothesized to stabilize weight-independent Hebbian learning rules
that otherwise suffer from unbalanced positive feedback (van Rossum,
Bi, & Turrigiano, 2000; Rubin, Lee, & Sompolinsky, 2001; Watt & Desai,
2010) and can lead to synaptic competition and activity-dependent redis-
tribution of synaptic strength (Song, Miller, & Abbott, 2000; van Rossum
et al., 2000). A comprehensive study of the effects of a homeostatic regula-
tory process necessitates the inclusion of spike-timing-dependent plasticity
and synaptic competition, as well as sufficient simulation time to achieve
equilibrium, and is thus a problem of significant computational complex-
ity. In order to show that a homeostatic process was consistent with the
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emergence of reverberation, we applied a simple negative feedback rule
to model networks (see section 2). Briefly, synaptic weights were modified
after each epoch of time according to whether the postsynaptic neurons
had firing rates which were above (resulting synaptic depression) or below

Figure 5: Synaptic scaling regularizes and stabilizes reverberation. (A) Proba-
bility distribution P(w) of synaptic weights for two model networks (N = 500).
Each network was generated such that each neuron received a number of in-
puts determined by a mean 〈k〉 = 40 with standard deviation σk . The amplitude
of all inputs was then scaled such that the summed input to each neuron in
the network had constant amplitude. Dashed line: σk = 5; solid line: σk = 120.
(B) Incidental changes in topological measures (clustering coefficient, C , and
path length, L , both scaled relative to their maximal values for clarity of presen-
tation) accompanying changes in σk . (C) Probability of observing a spontaneous
outbreak of activity from a resting network during a 10 second time window, for
different scenarios of network size and connectivity. For networks whose con-
nections were determined only by network size p = 〈k〉/N, the variability in in-
put number is given by a binomial distribution σk = σb = √

Np(1 − p). Without
synaptic scaling, such networks were vulnerable to spontaneous activity (gray
bars) due to variability in input number across neurons: some neurons receive
many inputs, and spontaneously fire, triggering the network. When neurons re-
ceive synapses with different probabilities, the distribution is broader (2σb) and
spontaneous activity is guaranteed (white bars). However, spontaneous activity
was abolished in all networks when synaptic inputs were scaled according to
the summed input onto each neuron (black bars). For all cases shown, 〈k〉 = 22.
(D) Sample raster plots of evoked network activity (N = 300, 〈k〉 = 22). Upper
panel: Unscaled network that did not exhibit spontaneous activity in 10 sec ob-
servation window. Lower panel: Same network with synaptic strengths scaled.
Arrow indicates stimulation time. Note that scaling has very little effect on
the structure of a normal reverberation. (E) The number of active neurons per
PSC cluster declines during the reverberation, prior to sudden termination, for
networks of different sizes (upper panel, N = 400; lower panel, N = 100). Open
circles: σk = 20. Closed circles: σk = 120. Data points are pooled results from five
independent realizations. Reverberation was initiated with a brief stimulus at
T = 1 second. (F) Quantification of (E). The rate of change in the number of active
neurons during the reverberation is nearly linear in the variability of synap-
tic input number σk . N = 500. Gray circles: 〈k〉 = 20; black squares: 〈k〉 = 40.
(G) Due to scaling, the number of synaptic inputs received by a neuron predicts
when that neuron will drop out of the reverberation. Neurons with numerous
but small-amplitude inputs will drop out earlier. Black squares: σk = 120; open
circles: σk = 60. N = 500. Stimulus at T = 1 second. (H, I) For a wide range of
heterogeneities in synaptic input number, both the duration of reverberation
(H) and the rate of PSC cluster appearance (I) are nearly constant. Keys are the
same as in (F). For (F–I), all data points are averages over 20 realizations. Data
points are mean ± S.E.M.
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(resulting synaptic potentiation) average firing rates. This homeostatic pro-
cess brought the network to a steady state during which the activity was
characterized by reverberation occurring at the firing rate set point (see the
appendix). We observed that starting from random networks, neurons with
a greater number of presynaptic partners tended to spike more frequently;
however, ultimately the weights of synaptic inputs to these neurons were
scaled down by the feedback rule, while the weights of inputs to neurons
with few presynaptic partners were scaled up.

To overcome the difficulty associated with the computational demand
of simulations of a dynamic synaptic homeostasis process, in the subse-
quent simulations, we introduced a simple hard scaling rule for synaptic
conductances: the sum of the strength of synaptic inputs to each neuron
was set to a constant. For neurons with a large number of synaptic inputs,
each input was scaled down, and for neurons with a small number of in-
puts, the input was scaled up. In all cases, the initial weights are drawn
from a single distribution and then scaled. This implies that as σk increases
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(i.e., as the distribution of number of inputs per neuron broadens), the scal-
ing rule will cause the distribution of synaptic weights to broaden, as we
show in Figure 5A. Even with the scaling constraint, for network size N
and mean input number 〈k〉 = Np0, a wide variety of networks is still pos-
sible, each corresponding to different standard deviations of the number
of presynaptic partner neurons, σk . Larger values of σk would correspond
to greater heterogeneity in the number of presynaptic partners made by
each neuron, and various values of σk could each reflect different rules
for synaptic connectivity in developing networks. For random connectivity
where the connection probability between any two neurons is a constant p0,
the distribution of synaptic inputs derives from a binomial distribution, and
σk = √

Np0(1 − p0). For connectivity with variable p, σk will have a greater
value. However, because the scaling we consider here is cell specific, in all
cases the variance in total input strength is zero: Var(

∑
j wi j ) = 0 for each

neuron i .
We analyzed reverberations as a function of changes in the population

size N as before, only now we applied the scaling rule and examined the
stability of reverberation for different values of σk . Increasing σk increases
the heterogeneity of connectivity; however, in scaled networks, the total
maximal synaptic input conductance per neuron is a constant. The standard
deviation σk also incidentally influences the topology of the network (see
Figure 5B): for larger variance in synaptic input number, more neurons
receive a large number of inputs, serving as hubs. Such hubs tend to decrease
the mean path length L between neurons in a network, although because
the weights of inputs to these hubs are scaled to be small, it is unclear
whether path length remains a meaningful metric.

We showed earlier (see Figure 4) that the variance σk = √
Np(1 − p)

introduced by random connectivity predisposes some neurons to be highly
sensitive to spontaneous synaptic input. The probability that such randomly
connected but unscaled networks exhibited spontaneous activity within
a 10 second period is shown in Figure 5C. Intuitively, as the population
size N increases, the probability of one or a few highly connected neurons
triggering spontaneous network activity must increase (see Figure 5C, gray
bars). The probability that at least one neuron in a randomly connected
network receives at least k∗ inputs can be derived from the cumulative
distribution function for a binomial distribution and is given by

p({ki ≥ k∗} �= ∅) = I1−p(n − k∗, 1 + k∗), (3.1)

where Ix(a , b) is the regularized incomplete beta function. However, when
synaptic weights in such networks are scaled to a constant, such that the
mean total synaptic input remains the same but the variance becomes
zero, spontaneous activity disappears completely (see Figure 5C, black
bars versus white bars). Even in networks with large values of σk , where
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spontaneous activity is guaranteed to occur in unscaled networks (see Fig-
ure 5C, white bars), applying a scaling rule completely abolishes sponta-
neous activity (see Figure 5C, black bars). This occurs because while the
distribution of k across the neuronal population is unchanged by scaling,
the distribution of summed synaptic input strength collapses to a delta
function.

However, scaled networks are far from homogeneous; some neurons
may still be strategically connected to receive important inputs. Thus, in
spite of the changes in spontaneous activity, the population raster during
stimulus-evoked reverberation remains relatively invariant to such scal-
ing (see Figure 5D), indicating that the stability of the quiescent state can
be guaranteed without significantly altering the stimulus response. How-
ever, in scaled networks, the participation of neurons in the reverberation
over time depends critically on the value of σk . This is because as σk in-
creases, a larger fraction of neurons will have a large number of weak
inputs compared to the median neuron. Because these inputs will not al-
ways be sufficiently coordinated to drive the postsynaptic neuron to thresh-
old during a PSC cluster (as explained in section 2), these neurons will
tend to drop out of the reverberation over time. The reverberation is thus
characterized, counterintuitively, by gradually decreasing participation of
the most densely connected neurons. We demonstrated this by computing
the number of neurons active over the course of the reverberation, where
“active” was defined as firing at least one spike during the time interval
[TP SC − 20 ms,TP SC + 20 ms] and TP SC is the time of PSC cluster gener-
ation, defined as the local maximum of neuronal population activity (see
Figure 5E).

This “dropout” behavior, in which the number of neurons participating
in the reverberation decreases over time (see Figures 5E and 5F), is not
observed in networks with random connectivity and unscaled synaptic
strength (not shown), and is less prominent in smaller networks even with
scaling (see Figure 5E, lower panel), suggesting that it results from the action
of scaled synaptic connectivity in networks where the range of possible
presynaptic partners is large. Finally, we confirmed the hypothesis that the
neurons dropping out first are those with large numbers of small-amplitude
inputs by plotting the number of synaptic inputs ki received by a neuron
versus the time t of its last spike (see Figure 5G).

The reduced recruitment of such neurons during the PSC cluster further
acts to decrease the overall AR drive onto their postsynaptic partners. This
in turn reduces the probability that the next PSC cluster will be generated,
contributing to an earlier termination of reverberatory activity (see Figure
5H). On the other extreme, networks with low σk will have few neurons
with many inputs and few neurons with strong inputs, thus reducing the
probability that reverberation can even begin. Consequently, there is a value
of σk , that is, heterogeneity of synaptic input number, that is optimal for
producing the longest-lasting reverberation (see Figure 5H).
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4 Discussion and Outlook

Sustained reverberation of activity in neuronal assemblies could represent
a holding mechanism, allowing long intervals of time to elapse between
stimulus and response and enable working memory (WM) (Hebb, 1949).
Under this hypothesis, reverberations should be more prolonged in larger
assemblies (Hebb, 1949). However, as developing brains grow, imbalances
in patterns of synaptic connectivity can result in seizures. Experimental ob-
servations of cultured hippocampal networks (Lau & Bi, 2005; Gerkin et al.,
2010), and our computational modeling results also suggest that the size of
a neuronal network and the pattern of synaptic inputs can determine the
duration and stability of both a stimulus-evoked reverberatory response
and the quiescent period between such responses in the absence of a stim-
ulus. This makes it difficult to explain how modes of network activity can
persist across networks of different sizes (e.g., homologous brain regions in
different species) or different instances of the same circuit (e.g., homologous
bran regions across individuals within a species). However, we posit that
rather than simply increasing the mean number of inputs (for constant p) or
the likelihood of finding highly connected cells (for p = k N−1) as the popu-
lation becomes larger, developmental rules might act to impose topological,
size-invariant homeostatic constraints on synaptic strength and connectiv-
ity, which could become crucial for the generation and sustenance of re-
verberations without the emergence of coordinated, stimulus-independent
activity.

This could be important for maintaining stimulus discriminability in
the face of development. Networks that are activated just as easily by
spontaneous- as by stimulus-evoked synaptic activation will be unable to
effectively communicate the timing or identity of a stimulus to downstream
targets. And if the timing of activation of the neurons carries information
about the stimulus or some other state variable, then it is important for
reverberation to remain coherent while it is engaged; spontaneous input
cannot drive neurons to begin firing out of turn (Abeles, 1991). These obser-
vations indicate that constraints on synaptic drive might play a crucial role
in determining the ability of diverse networks to retain these characteristics.

Previous studies (van Vreeswijk & Sompolinsky, 1998) have stressed that
neuronal networks with random connectivity have significant variability in
the actual number of synaptic inputs per cell. In our studies, we found that
variability in synaptic connectivity, even if generated entirely by binomial
statistics, might become sufficient in large networks to result in a dynam-
ical instability of an evoked reverberatory response. Thus, since biological
networks do exhibit reverberation and other modes of stimulus-evoked
rhythmic persistent activity, this suggests the existence of organizational
motifs in the architecture of synaptic connectivity (Sporns et al., 2000; Segev,
Benveniste, Shapira, & Ben-Jacob, 2003; Song et al., 2005). We propose that
synaptic homeostasis may be such an organizing force. In model networks
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with a variable number of inputs per neuron, the destabilizing effects on re-
verberation of random variability in synaptic connectivity were suppressed
by imposing a simple normalization constraint on synaptic drive. By mak-
ing this constraint cell specific (see Figure 5; Turrigiano, 2008) and not sim-
ply a population statistic (see Figure 4; Wilson et al., 2007), we illustrated
that the destabilizing effects of changes in neuron number or heterogeneity
of connectivity could be easily corrected. This reveals a potentially impor-
tant role for synaptic scaling that has been overlooked: rather than simply
preserving the mean value of synaptic input and potentially preserving
mean firing rates, normalization of synaptic drive can also suppress the
variance of synaptic input, thus regularizing and stabilizing patterns of
activity. By suppressing the variance, cell-specific scaling permits stimulus-
evoked modes of network activity to be exhibited faithfully in the face of
variability in network size or intrinsic neuronal properties rather than per-
mitting these modes to collapse when statistical fluctuations in synaptic
connectivity become significant. Thus, synaptic homeostasis may not only
normalize firing rates (by normalizing mean synaptic input per neuron)
but also regularize activity patterns (by reducing the variance in synaptic
input per neuron). Experiments that measure the rate of network activity,
but not its temporal structure, are likely to miss this distinction. Additional
experiments may aim to validate this hypothesis.

Earlier modeling work suggested that small-world connectivity might
support self-sustained population activity (Roxin et al., 2004) but could also
be at the origin of epileptic-like seizures (Netoff et al., 2004). Thus, we ex-
pected that such a topological constraint might be essential to preserving
reverberations across a range of population sizes and a range of realizations
of model networks. However, neither the duration nor the frequency of re-
verberation in model networks was enhanced in the small-world regime;
instead, introducing a synaptic scaling constraint imparted networks with
robust reverberatory dynamics. Because neither of the earlier models (Roxin
et al., 2004; Netoff et al., 2004) included features of short-term synaptic de-
pression or AR, this may explain why, in those models, such a dependence
on topology was observed. Interestingly, both topological and homeostatic
constraints govern the correlation structure of synaptic connectivity. In the
former, the probability of a connection is related to the number of con-
nections to the j th neuron. By contrast, in the latter, the amplitude of a
connection is related to the number of connections to the j th neuron. To-
gether, these complementary principles could work to provide rich network
dynamics that operate within predetermined boundaries.

Our numerical results for networks employing synaptic scaling lead to
an experimental prediction in systems where AR represents a significant
fraction of total synaptic transmission. Under a synaptic scaling rule, the
rate, duration, and form of reverberation are only weakly affected by in-
creasing the heterogeneity of synaptic input number, indicating that the
capacity to reverberate normally under such a constraint is preserved for
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a wide range of connectivity patterns (many values of σk). However, only
networks whose synapses are scaled should show drop out dynamics, such
that the number of participating neurons decreases over the course of a
reverberation. Nonscaled networks should exhibit no such dynamics, al-
though the population activity inferred from measuring recurrent synap-
tic input onto a single neuron may be indistinguishable in the two cases.
Furthermore, the rate at which neurons drop out from the reverberation
should be related to σk , such that networks with greater variance in synap-
tic input number exhibit faster dropout (see Figures 5E and 5F). Finally,
those neurons receiving the greatest number of synaptic inputs should drop
out the earliest (see Figure 5G). These predictions should be testable with
calcium- or voltage-sensitive dye imaging, which should in principle be able
to track the activity in individual cells over the course of seconds. Unfortu-
nately, in the face of spike rates � 1 Hz, calcium dyes can quickly saturate,
and it can be impossible to detect single spikes once this occurs. Perhaps
more sophisticated imaging techniques can be used to test this model
prediction.

Appendix: Equations of the Neuronal Model

We model the neurons as one-compartment, two-variable entities with dy-
namics described by a slightly revised version of a Morris-Lecar model
(Morris & Lecar, 1981). This version has been recently developed (Prescott,
Ratte, de Koninck, & Sejnowski, 2006) to account for spike shape and val-
ues of biophysical parameters that are consistent with the data for hip-
pocampal pyramidal neurons. We chose the Morris-Lecar model because
it is computationally less expensive than the full Hodgkin-Huxley model
yet allows us to retain some biological plausibility regarding the mecha-
nism of spike generation and neuronal excitability. For each of our model
neurons, the dynamics of membrane potential are given by the following
equation:

C
dV
dt

= −Iion(t) − Isyn(t). (A.1)

In equation A.1, the quantity Iion(t) is an ionic current that sums contri-
butions from different ion channels; here, it is given as the sum of a fast,
noninactivating sodium channel, a noninactivating potassium channel, and
a current due to the leak conductance:

Iion(t) = gNa m∞(V)(V − ENa ) + gK w(V)(V − EK ) + gleak(V − Eleak).

(A.2)
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The dynamics of the activation variable for the potassium conductance are

dw

dt
= φ

w∞(V) − w(V)
τw(V)

. (A.3)

And the relaxation curves of sodium and potassium conductance activation
are

m∞(V) = 0.5
(

1 + tan h
(

V − V1

V2

))
(A.4)

w∞(V) = 0.5
(

1 + tan h
(

V − V3

V4

))
. (A.5)

The relaxation time of w(V) is voltage dependent and is given by

τw(V) =
(

cos h
(

V − V3

2V4

))−1

. (A.6)

The quantity Isyn(t) represents a summation over all incoming synapses to
a given neuron. For the synaptic current to ith model neuron, it is described
by

Isyn(t) = −(Vi − ES)
∑

j

gi j Yi j (t), (A.7)

with Y reflecting the fraction of neurotransmitter in the active state in
equation 1 and the sum running over the set of all presynaptic partners
j of that neuron. We study the dynamics of networks composed solely of
excitatory neurons, and therefore the synaptic reversal potential is set to
ES = 0 mV. The value of the maximal synaptic conductance, gi j , is picked
up from truncated (±20% around the mean) gaussian distribution with
〈gi j 〉 = 3 mS/cm2, σ = 1.5 mS/cm2.

The parameters of neuronal and synaptic dynamics that were used in
the model are given in Table 1.

A.1 Modeling the Dynamics of Presynaptic Residual Calcium. It is
often assumed in modeling studies that ionic current is linearly related
to the transmembrane voltage. However, this relation does not hold for
ions for which a steep concentration gradient exists between the extra-
and intracellular sides of the membrane. For example, for calcium, the
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Table 1: Parameters Used to Model Neuronal Dynamics and Synaptic Trans-
mission.

Parameter Parameter Value Parameter Parameter Value

gNa 10 mS/cm2 Ka 0.1 μM
gK 10 mS/cm2 m 4
gleak 1.3 mS/cm2 β 2 μM/s
ENa 50 mV Kc 0.4 μM
EK −100 mV n 2
Eleak −65 mV γ 80 nM/ms
V1 −1.2 mV c0 2 mM
V2 23 mV Ip 0.11 μM/s
V3 −2 mV ξ 10−3

V4 21 mV τR 0.3 s
φ 0.15 τD 10 ms
C 1 μF/cm2 τS 8 s
ES 0 mV τL 5 s

Goldman-Hodgkin-Katz equation is used to describe the flux of these ions
through the membrane:

�Ca = 4pCa
Vs F 2

RT
[Ca2+]in − [Ca2+]outexp(−4Vs F/RT)

1 − exp(−4Vs F/RT)
. (A.8)

In this equation A.8, �Ca is the flux of calcium ions, pCa is the permeability
of Ca2+ ions, F is the Faraday constant, R is the gas constant, and T is the
temperature (in Kelvins). The flux of calcium ions depends on the extrasy-
naptic concentration [Ca2+]out as well as on the intrasynaptic concentration,
[Ca2+]in. In addition, �Ca depends on the transmembrane potential, Vs .

The dependence of calcium flux on transmembrane voltage makes long-
term network simulations computationally demanding, as it requires us to
model the dynamics of voltage in presynaptic terminals. To overcome this
difficulty, we make an educated guess here by assuming that the per spike
amount of residual synaptic calcium is proportional to the reversal poten-
tial of synaptic calcium channels, ECa = (13.32 mV)log( [Ca2+]out

[Ca2+]r
) (a substitu-

tion [Ca2+]in = [Ca2+]r was made). The spike-triggered increase in residual
calcium is thus modeled as γ log( [Ca2+]out

[Ca2+]r
)δ(t − tSP ), where γ captures the

density of synaptic calcium channels, the permeability to calcium ions, and
the conversion factor (from voltage to a change in concentration). Con-
sistent with experimental observations (Majewska, Brown, Ross, & Yuste,
2000; Sabatini, Oertner, & Svoboda, 2002), we tuned the parameter γ to
result in ≈0.1 μM increase in residual calcium after each synaptic spike (see
Table 1).
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Figure 6: Homeostatic regulation of firing rate leads to network reverberations.
(A) Duration of the network response to a brief stimulus delivered to one of the
neurons (as described in text) plotted versus the epoch of homeostatic conduc-
tance update for different target rates, as shown in the accompanying legend.
(B) Firing rate (averaged over all neurons) versus the epoch of homeostatic
conductance update for different target rates, as shown in the accompanying
legend. Reverberation emerged for a finite range of target firing rates. (C) Sam-
ple raster plots of the network response at different epochs for the target firing
rate of ν0 = 10 Hz. Top: epoch 100. Bottom: epoch 600. The studied networks
had N = 100, and p = 0.1.

A.2 Homeostatic Regulation of Synaptic Conductance Leads to the
Emergence of Network Reverberations. In a separate set of simulations,
we modeled homeostatic regulation of synaptic conductances. Starting from
a network with subthreshold synaptic conductances (a spike generated
by any one of the model neurons failed to cause a spike in any of its
postsynaptic targets), homeostasis adjusted synaptic weights to bring the
averaged firing rate to the preset target rate ν0. The increase in the firing rate
was accompanied by an increase in the duration of the response (see Figure
6). Thus, the homeostatic adjustment of synaptic conductance explained the
emergence of reverberations in initially quiescent networks and also shows
the positive relationship between reverberation duration and equilibrium
network firing rates.
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