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Cell-to-cell variability in molecular, genetic, and physiological fea-
tures is increasingly recognized as a critical feature of complex
biological systems, including the brain. Although such variability has
potential advantages in robustness and reliability, how and why
biological circuits assemble heterogeneous cells into functional
groups is poorly understood. Here, we develop analytic approaches
toward answering how neuron-level variation in intrinsic biophysi-
cal properties of olfactory bulb mitral cells influences population
coding of fluctuating stimuli. We capture the intrinsic diversity of
recorded populations of neurons through a statistical approach
based on generalized linear models. These models are flexible
enough to predict the diverse responses of individual neurons yet
provide a common reference frame for comparing one neuron to the
next. We then use Bayesian stimulus decoding to ask how effec-
tively different populations of mitral cells, varying in their diversity,
encode a common stimulus. We show that a key advantage pro-
vided by physiological levels of intrinsic diversity is more efficient
and more robust encoding of stimuli by the population as a whole.
However, we find that the populations that best encode stimulus
features are not simply the most heterogeneous, but those that
balance diversity with the benefits of neural similarity.

generalized linear models | intrinsic biophysics | neural variability |
stimulus coding | ion channels

Biological systems including brains must function efficiently
under many constraints, including constraints on the numbers

of individual neurons dedicated to a given task. Brain function
therefore depends on an appropriate division of labor, with spe-
cific neurons dedicated to different functions. For example, dif-
ferent types of retinal ganglion cells represent visual information
at different timescales (1), and distinct classes of cortical inter-
neurons play diverse roles in coordinating network activity (2).
Whereas attempts to understand how distinct classes of cells
encode information have proven successful (1), the importance of
within-type variability remains poorly understood (3, 4) although
has recently become a topic of great interest (5–8).
Although neuron-to-neuron variability is often viewed as an

epiphenomenon of biological imprecision (3, 4), having neurons
of the same type that respond to different stimulus features may
improve stimulus encoding. This variability may be leveraged to
improve functions such as stimulus encoding if heterogeneous
output of neurons of a single type is collectively used for pop-
ulation coding. Such populations of neurons could efficiently
represent complex stimuli by collectively covering the relevant
stimulus space (1, 9, 10). Network interactions could further
increase the efficiency of information transmission by decorre-
lating neural responses and reducing the redundancy between
their outputs (11–13). In contrast, eliminating redundancy (also
referred to as biological degeneracy, ref. 14) may make stimulus
coding less robust to noise or damage (15), thus we hypothesized
that an optimal coding strategy would require balancing diversity
with feature similarity or overlap.
Although theorists have previously explored this issue (12, 16,

17), analysis of the function of the diversity of real populations of
neurons requires overcoming methodological hurdles associated

with studying cell-to-cell variability (3, 4). Cell-level differences
(that are typically averaged away) must be captured and quan-
tified. Once these differences have been quantified, one must
compare the functional output of populations differing in their
variability. In the context of neural coding these issues translate
to answering the questions: What properties of neurons de-
termine their response to stimuli? How are these properties
distributed? And how do these distributions of properties in-
fluence the encoding of stimuli by populations? Although pre-
vious experimental approaches have identified neuron diversity
using standard receptive field analyses, these typically do not
describe the full complexity of neural responses to stimuli (18–
20), nor do they allow the source of the response heterogeneity
to be identified as either synaptic or intrinsic. In addition, sim-
plistic readouts of population spiking output may underestimate
the richness of the underlying neural code (1, 10, 21). Our ap-
proach allows the influence of intrinsic diversity to be isolated
from synaptic differences and captures the full potential of these
diverse populations for stimulus encoding.
Specifically, we developed measures of neuronal population

diversity based on statistical generalized linear models (18, 22)
that accurately reproduce the responses of recorded individual
olfactory bulb mitral cells (MCs). These cells have been shown to
express significant biophysical variability from neuron to neuron
(5–7). We then used the framework of model-based stimulus
decoding (18, 23) to compare how populations varying in their
diversity optimally encode varieties of stimuli. This approach
enables us to determine whether specific advantages arise from
the intrinsic diversity of these neurons, and how MC populations
balance the competing benefits of diversity and feature similarity.

Results
Statistical Neuron Models Capture Mitral Cell Response Diversity. We
generated models of individual MCs from data collected during in
vitro whole-cell recordings in which somatic current injection of
broad-band-filtered noise (5) evoked action potential trains (Fig. 1
A and B; n = 44 neurons). Synaptic transmission was blocked
pharmacologically, so that differences in the cells’ spiking respon-
ses reflected only differences in their intrinsic firing properties (e.g.,
due to biophysical conductances and/or morphology). Each neu-
ron’s spiking response to input current was fit by a generalized
linear model (GLM). GLMs extend stimulus-based reverse corre-
lation or linear–nonlinear–Poisson (LNP) models (20, 24) by in-
cluding terms that describe how a neuron’s spike probability is
modulated via its previous spikes (18, 22). Here each GLM had
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optimal groups of neurons for encoding specific stimulus types.
We liken this scenario to that of sisterMCs associated with a single
glomerulus, which receive inputs with a specific temporal struc-
ture (26, 32) based on olfactory receptor neuron (ORN) odorant
binding kinetics, which differ across glomeruli and ORN subtypes
(33, 34). Would the best population for a given stimulus be more
diverse than selecting MCs at random from the physiologically
based set? Or would the best population be more homogeneous
than random, perhaps allowing the responses of unreliable neu-
rons to be improved upon by selecting neurons coding for re-
dundant (i.e., degenerate) stimulus features? To answer these
questions, we implemented a greedy search algorithm (35) to
build the best population of model MCs to encode a given stim-
ulus by iteratively adding neurons one at a time such that the
added neuron maximized the ability of the entire population to
represent the stimulus (Fig. 4A). Although it is not guaranteed to
find the global optimum, it is an efficient and intuitive method of

finding neuron groups more informative than those generated
through random sampling.
Visualizing the makeup of these greedy-search-selected pop-

ulations using dimensionality reduction (Fig. S6) reveals that they
reflect a balance between diversity—consisting of neurons with
different properties, and homogeneity, often including multiple
copies of selected neurons (Fig. 4 B and C and Fig. S7). In ad-
dition, the stimulus type dictates the selection of specific neurons
and the chosen level of population diversity. For example, the
population selected to best encode a white-noise stimulus (Fig.
4C) was composed primarily of similar neurons with high firing
rates; whereas, diversity in neuron properties was more important
for encoding a more naturalistic stimulus with both rapidly and
slowly varying temporal components (Fig. 4B). Using the greedy
search algorithm to select populations for each of the eight
stimulus types, we quantified the diversity of these populations
and of randomly sampled heterogeneous and homogeneous
populations (Fig. 4D). Surprisingly, greedy search populations
were on average ∼25% less diverse than heterogeneous ones
when considering either stimulus filter and postspike parameters.
Furthermore, quantifying population diversity for MC groups se-
lected to best encode different stimulus types reveals that they have
varying levels of diversity (Fig. 4E and Fig. S8), suggesting that
population diversity should be preferentially tuned to the afferent
stimulus distribution.
To ensure that the previous findings are not solely the result of

the greedy selection process, we performed additional simulations
by randomly constructing populations with differing amounts
of diversity and examining the relationship between population
diversity and decoding accuracy. As predicted from the greedy
search results, we found evidence for a U-shaped relationship
between decoding accuracy and population diversity (Fig. 4F and
Fig. S9), indicating that neural coding is optimized at intermediate
levels of diversity. However, population size is also a relevant
factor in the importance of population diversity, with diversity
being more important to smaller populations than larger ones
(Fig. S10). This suggests that heterogeneity will be more important
to populations in which the number of neurons devoted to rep-
resenting a stimulus is relatively small. Furthermore, we found the
benefit of neural variability to not be solely dependent upon
a single GLM filter dimension (Fig. S11), such as the stimulus filter
or bias term.

Discussion
Here we apply the framework of generalized linear models to
study how cell-to-cell differences in intrinsic properties of olfac-
tory bulb mitral cells influence stimulus encoding. The statistical
modeling approach that we have used accurately captures the
neuronal properties determining spiking and avoids overfitting.
It also avoids making specific but difficult-to-verify claims about
channel densities or properties that can arise from undercon-
strained Hodgkin–Huxley models (36). We show that diverse
populations offer the advantages of more efficient encoding (de-
fined in terms of information per cell or information per spike)
and more robust coding of different kinds of stimuli, such as
stimuli with wide ranges of spectral properties. This is because
neurons encoding partially overlapping (i.e., degenerate) stimulus
features can work together to overcome neural spike-generation
noise and also encode more stimulus features together than sep-
arate. We also show that populations selected to best represent
stimuli with specific spectral properties have differing amounts of
diversity, which suggests that population diversity should be se-
lectively chosen with respect to the precise stimulus to be encoded.
Although variants of this framework have been used to model
neural responses previously [including in single neuron modeling
competitions (37, 38)] we extend these methods to describe the
systematic biological differences among neurons and their impact
on population coding. Given the generality of this framework, we
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Fig. 3. Populations composed of diverse neurons effectively encode stimuli
with very different frequency spectra. ( A–C) Example stimulus (Top; black),
rasters (Bottom), and reconstructions ( Top) for a homogeneous population
composed of five copies of the most informative neuron (pop 1, red) and
a heterogeneous population composed of five neurons with diverse prop-
erties (pop 2, green) for three stimuli with different power spectra: stimulus
1, Gaussian white noise (GWN) convolved with an alpha function with � = 3
ms (A); stimulus 2, GWN with alpha function with � = 10 ms (B); stimulus 3,
Ornstein –Uhlenbeck process with � = 40 ms (C). Note that although both
populations can represent the stimulus in A well, only population 2, the
diverse population, can also represent the lower frequency stimuli in B and
C. (D) Neuron GLM parameters for the populations in A–C. Top indicates
parameters for population 1 and Bottom for population 2 (green shades
indicate different neurons). ( E) Power spectra for the three stimuli in A–C
(dotted, solid, dashed respectively). ( F and G) Relative rankings of stimulus
reconstruction accuracy for all homogeneous (hom-, red) and 200 randomly
sampled heterogeneous populations (het-, green) for stimuli 1 versus 2 ( F) or
1 versus 3 (G). Populations in Top Right indicate those which represent both
stimuli accurately. Asterisks indicate populations highlighted in A–C. Note
that hom populations are among the bottom populations and are further
from the unity line than het populations. (H) Average rank of het and hom
populations across eight spectrally unique stimuli ( Materials and Methods).
Het populations are consistently ranked higher (more accurate) than hom
ones (P = 0.002, paired Wilcoxon). ( I) Plot of generalizability, de fined as the
correlation of population ranks on stimulus pairs, for hom and het pop-
ulations across all pairs of eight stimulus types. Each dot corresponds to the
generalizability between a pair of stimulus types ( n = 28 total pairs). Het
populations are signi ficantly more likely than hom to generalize to novel
kinds of stimuli ( P = 1.5*10 −4, paired Wilcoxon).
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believe that this methodology can similarly be extended to de-
scribe electrophysiological differences across neuron types and to
develop hypotheses about the distinct roles of different neuron
types throughout the brain.
One of the key advantages of this approach is that it allows us

to use Bayesian stimulus decoding to ask how neuron-to-neuron
differences in stimulus filtering and postspike properties in-
fluence population coding of arbitrary stimuli. Bayesian decod-
ing is advantageous because it offers an optimal, best-case view
of neural encoding, making few assumptions that risk under-
estimating the complexity of the neural code (18, 23). Although
we explored the relationship between stimulus encoding in di-
verse and homogeneous populations in a previous study (5),
performing stimulus reconstruction here allows the identification
of the relative importance of variation in specific features of the
sets of recorded neurons. This approach also allows us to in-
vestigate stimulus encoding in a more general context by simu-
lating responses to arbitrary stimuli. An obvious advantage of
simulation approaches is that we are not limited to only ana-
lyzing data that we are able to collect during recordings.
Our results make specific, testable predictions on the role ofMC

intrinsic diversity for encoding olfactory information. First, we
show that when populations need to represent a variety of stimulus
types, then intrinsic diversity facilitates generalizing representa-
tions across stimulus types. Second, when populations need to
represent a single kind of stimulus and are allowed to selectively
choose their level of variability, populations choose a balance
between complete homogeneity and diversity. That is, homoge-
nizing the input received by a population of neurons should lead
the population to be less diverse. This in silico finding is intriguing
because it is consistent with recent experimental findings showing

that sister MCs, receiving primary olfactory inputs from the same
glomerulus and olfactory receptor subtype, are biophysically more
similar to one another than sampling MCs at random (7). Fur-
thermore, our work makes the additional hypothesis that the level
of diversity across sister MCs should be adaptive with respect to
the unique stimulus distribution that these neurons receive from
their olfactory receptor subtype (32–34). Therefore, we predict
that the levels of MC intrinsic diversity between sister MCs should
be empirically different across glomeruli (Fig. 4G).
We note that we made multiple assumptions here for the sake

of computational tractability. Because our focus was to study the
functional role of MC intrinsic diversity, we chose not to include
any of the effects of neural connections such as synapses between
neurons in our experiments and simulations. Given that the
olfactory bulb possesses extensive lateral circuitry (11), which has
been shown to also diversify MC responses (11, 39, 40), we ex-
pect that bulbar circuit activity will work in conjunction with
intrinsic diversity in vivo to further diversify MC responses (41).
Furthermore, when decoding we took the perspective that the
best populations were those that resulted in the most faithful
reconstruction of the stimulus. However, the biological solution
dictating the actual amount of diversity may use alternative cri-
teria for optimality. For example, in vivo olfactory bulb MCs may
seek to represent only odor-specific stimulus components or may
try to maximize stimulus representation while also minimizing
the number of spikes used to transmit the information (42). We
chose to avoid assumptions about which features of ORN input
are most important for MCs to represent and rather to take the
agnostic view that MCs should try to represent the stimulus in its
entirety. Our approach, however, can readily be adapted to tasks
that require representation of specific stimulus components.
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Fig. 4. Populations optimized for stimulus representation combine homogeneity with diversity. ( A) Cartoon of greedy search algorithm to estimate the
population that best represents a particular type of stimulus. Neurons were iteratively added, one at a time, to the current population of neurons suc h that
the neuron chosen maximized the population ’s reconstruction accuracy. To allow for homogeneity, neurons could be added more than once (e.g., two red
neurons). (B and C) Visualization of the population selected to best represent a white-noise stimulus ( B) or a low-frequency stimulus ( C). Graphs show neurons
(as dots) projected into a 2D space using principal component analysis (PCs). Population sizes vary from n = 1 to n = 10, numbers next to dots correspond to
algorithm iteration step when each neuron was added. Note that certain neurons are chosen multiple times and that stimulus type dictates the selected
population diversity. ( D) GLM parameter diversity of the greedy-search-selected populations (blue) averaged over eight different choices of stimulus spectra
relative to homogeneous (red) and randomly sampled heterogeneous populations (green), n = 10 neurons per population. Asterisks indicate where greedy
search populations are signi ficantly less diverse than heterogeneous ( P < 0.05) and population diversity has been normalized to that of randomly sampled
heterogeneous. Error bars indicate SEM (blue) and interquartile range (green). ( E) Greedy-search population diversity for speci fic stimlus types. Colors indicate
different stimulus types corresponding to inset power spectrum (magenta, stimulus as in B; cyan, Ornstein –Uhlenbeck process with � = 10 ms; black, stimulus
as in C), open circles indicate multiple runs of the greedy search algorithm ( n = 10 per stimulus type), asterisks indicate signi ficant differences in population
diversity between stimulus types. ( F) Population decoding error as a function of stimulus filter diversity for 200 randomly sampled populations (dots, n = 5
neurons per population) for stimulus 1 and 2 as in Fig. 3 ( A and B, respectively). Least-squares fits using a second-order polynomial (blue) show that on
average there is an intermediate level of stimulus filter diversity where decoding error is minimized (regression P < 0.01). (G) Cartoon showing that pop-
ulation diversity should be preferentially selected with respect to the speci fic incoming stimulus distribution.
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