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Brain-wide analysis of electrophysiological diversity yields novel cate-
gorization of mammalian neuron types. J Neurophysiol 113: 3474–3489,
2015. First published March 25, 2015; doi:10.1152/jn.00237.2015.—For
decades, neurophysiologists have characterized the biophysical prop-
erties of a rich diversity of neuron types. However, identifying
common features and computational roles shared across neuron types
is made more difficult by inconsistent conventions for collecting and
reporting biophysical data. Here, we leverage NeuroElectro, a literature-
based database of electrophysiological properties (www.neuroelectro.
org), to better understand neuronal diversity, both within and across
neuron types, and the confounding influences of methodological
variability. We show that experimental conditions (e.g., electrode
types, recording temperatures, or animal age) can explain a sub-
stantial degree of the literature-reported biophysical variability
observed within a neuron type. Critically, accounting for experi-
mental metadata enables massive cross-study data normalization and
reveals that electrophysiological data are far more reproducible across
laboratories than previously appreciated. Using this normalized data-
set, we find that neuron types throughout the brain cluster by bio-
physical properties into six to nine superclasses. These classes include
intuitive clusters, such as fast-spiking basket cells, as well as previ-
ously unrecognized clusters, including a novel class of cortical and
olfactory bulb interneurons that exhibit persistent activity at theta-
band frequencies.

neuron biophysics; intrinsic membrane properties; electrophysiology;
neuron diversity; neuroinformatics; text mining; databases

NEUROPHYSIOLOGISTS HAVE RECORDED and published vast amounts
of quantitative data about the biophysical properties of neuron
types across many years of study. Compared with other fields,
however, little progress has been made in compiling and
cross-analyzing these data, let alone collecting or depositing
measurements or raw data (Akil et al. 2011; Ferguson et al.
2014). It is thus difficult, for example, to determine whether a
cerebellar Purkinje cell is more similar to a hippocampal CA1
pyramidal cell or a cortical basket cell without first recollecting
such data in a dedicated experiment, even though thousands of
recordings have been made from these neuron types across many

laboratories. By analogy to genetics, imagine if genes needed to
be resequenced every time an investigator wanted to examine
genetic homology (Altschul et al. 1990; Benson et al. 2013).

The fundamental challenge in comparing electrophysiolog-
ical data collected across laboratories is twofold. First, unlike
genetic sequences (Altschul et al. 1990; Benson et al. 2013) or
neuron morphologies (Ascoli et al. 2007), electrophysiological
data are not compiled centrally but remains scattered through-
out the vast literature (Akil et al. 2011; Ferguson et al. 2014).
Second, and perhaps more critically, electrophysiological data
are collected and reported using inconsistent methodologies
and nomenclatures (Ascoli et al. 2008). Thus, if two laborato-
ries report phenotypic differences for the same neuron type, do
these differences reflect true biological differences or are they
merely the result of methodological differences? These chal-
lenges stand as a major barrier to comparison and generaliza-
tion of results across neuron types and routinely lead to
unnecessary replication of experiments and the slowing of
progress (Akil et al. 2011; Ferguson et al. 2014).

Here, we present a novel approach for integrating and
normalizing arbitrarily large amounts of brain-wide electro-
physiological data collected across different laboratories. In
contrast to costly ongoing efforts by large institutes to record
such data anew (Insel et al. 2013; Kandel et al. 2013; Markram
2006), our methods capitalize on the immense wealth of data
on neuronal biophysics that has already been painstakingly
recorded and published, for example, in journals such as this
one. By leveraging the methodological variability inherent in
how different laboratories collect and report biophysical data,
we develop statistical methods to disentangle the confounding
role of methodological inconsistencies from true biophysical
differences among neuron types. This allows us to normalize
and compare data collected across laboratories, including our
own, and assess whether neuron types in disparate regions of
the brain share common electrophysiological profiles and
thereby fulfill common computational and circuit functions.

This work is of relevance to the broad community of
neurophysiologists and computational modelers as it makes
large amounts of valuable electrophysiological data easily
accessible for subsequent comparison, reuse, and reanalysis.
More generally, our work offers a partial solution to the
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perceived reproducibility crisis in science (Collins and Tabak
2014; Ioannidis 2005; Vasilevsky et al. 2013) by demonstrating
how data collected using methodologically inconsistent sources
can be combined and leveraged to generate novel insights.

MATERIALS AND METHODS

Electrophysiological Database Construction

We built a custom infrastructure for extracting neuron type-specific
electrophysiological measurements, such as resistance input (Rinput)
and half-width action potential (APhw), as well as associated metadata
(detailed in Tripathy et al. 2014). Briefly, our methods for obtaining
this information are as follows. First, we obtained thousands of full
article texts as HTML files from publisher websites. We next searched
for articles containing structured HTML data tables; within these
tables we used text-matching tools to find entities corresponding to
electrophysiological concepts like “input resistance” and “spike half-
width.” Our methodology accounts for common synonyms and ab-
breviations of these properties (e.g., “input resistance” is often abbre-
viated as “Rin”).

To identify measurements from neuron types collected in control or
normotypic conditions, we primarily used manual curation. We used the
listing of vertebrate neuron types provided by NeuroLex (Larson and
Martone 2013; Shepherd 2003) (http://neurolex.org/wiki/Vertebrate_
Neuron_overview) to link mentions of a neuron type within an article
to a canonical, expert-defined neuron type. After identifying both
neuron type and electrophysiological concepts, we then extracted the
mean electrophysiological measurement (and when possible, the error
term and number of replicates). In most cases, however, our current
methods were unable to extract the number of replicates; we thus have
limited our focus here to analyses using mean measurements alone.
Following application of the automated algorithms, we manually
curated the extracted information and standardized electrophysiolog-
ical property measurements to the same overall calculation method-
ology (e.g., see APPENDIX). In addition, we also used manual curation
alone to extract information from �35 articles, which did not contain
information in a formatted data table (typically older articles only
available as PDFs or articles specific to olfactory circuit physiology).

We also obtained information on article-specific experimental con-
ditions from each article’s methods section. Specifically, we consid-
ered the effect of animal species, animal strain (here we distinguished
between strains of rats but not different genetic strains of mice),
electrode type (sharp vs. patch clamp), preparation type (in vitro, in
vivo, cell culture), liquid junction potential correction (explicitly
corrected, explicitly not corrected, not reported in the article), animal
age (in days; when only animal weight was reported, we manually
converted reported weight to an approximate age using conversion
tables provided by animal vendors), and recording temperature (we
assigned reports of “room temperature” recordings to 22°C and in
vivo recordings to 37°C). Additional methodological details, includ-
ing recording and electrode solution contents and pipette resistances,
will be considered in future iterations.

Explicit details and evaluation criteria for the quality control (QC)
audit of the NeuroElectro database are provided in the APPENDIX.

Data Analysis

Data filtering and preprocessing. Before performing systematic
analyses of the data within the NeuroElectro database (i.e., see data
referred to following Fig. 2 onwards, unless otherwise specified), we
performed the following filtering steps: 1) we excluded nonbrain
neuron types (e.g., we excluded spinal cord neuron types); 2) we
excluded data collected from dissociated and slice cell cultures; 3) to
account for large differences in animal age across species, we only
used data from rats, mice, and guinea pigs; 4) we excluded data from
embryonic and perinatal (�5 days) animals; and 5) due to inconsis-

tencies in the definition of membrane time constant (�m), we excluded
measurements of �m, which deviated �2 SD from the median mea-
surement across articles. Where metadata attributes were not reported
or were unidentifiable within an article (which was typically rare for
the experimental conditions that we focused on), we used mean (or
mode) imputation for continuous (or categorical) metadata attributes
(Little and Rubin 2002).

Metadata incorporation. We used statistical models to account for
the influence between heterogeneous experimental conditions and
measured electrophysiological values. Specifically, we modeled the
relationship between electrophysiological measurements and experi-
mental metadata as y� � �X, where y� denotes the vector of electro-
physiological measurements corresponding to a single property across
all articles [e.g., resting membrane potential (Vrest)]; X denotes the
regressor matrix where rows denote the metadata attributes associated
with a single measurement yi (e.g., x�i � [xNeuronType,i, xSpecies,i,
xStrain,i, ...]) and � are the regression coefficients denoting the relative
contribution of each metadata attribute. We log10-transformed mea-
surements of Rinput, �m, APhw, and animal age to normalize values
because these varied across multiple orders of magnitude and/or to
enforce that these values remain strictly positive following metadata-
based adjustment.

When combining the influence of multiple metadata attributes into
a single regression model (see Fig. 2C), we wished to use powerful
and flexible models to capture the relationship between metadata and
measurement variance while also mitigating the tendency of more
complex statistical models to overfit the data. Thus, when fitting
statistical models, we used stepwise regression methods (implemented
as LinearModel.stepwise in MATLAB) to add model terms one-by-
one and added terms until the model’s Bayesian information criterion
(BIC) was optimized. Our choice of BIC here is based on its conser-
vativeness relative to other approaches for model selection, which
helps protect against statistical overfitting. Furthermore, for each
electrophysiological property, we selected the potential model com-
plexity from a set of candidate models (i.e., models that included
terms for only: constant, linear, purely quadratic, interaction, interac-
tion � quadratic). We selected model complexity using 10-fold cross
validation and minimization of the sum of squared errors on out-of-
sample data. In reporting the variance explained by different models,
we used adj. R2 to compare between models differing in their number
of parameters.

After fitting metadata regression models for each electrophysiolog-
ical property, for subsequent analysis we adjusted each electrophysio-
logical measurement to its estimated value had it been measured under
conditions described by the population mean metadata value (or mode for
categorical metadata attributes). For example, since the majority of
measurements represented in NeuroElectro were recorded using patch-
clamp electrodes, we then adjusted data values obtained using sharp
electrodes to their predicted value had they been recorded using
patch-clamp electrodes. To assess the robustness of the fit of the
regression models, we re-ran the regression analysis on different
versions of the dataset where the data were randomly subsampled (see
APPENDIX). Note that the penalty that BIC imposes against overfitting
is stronger when there are fewer data points used to fit the models.
Thus progressively subsampling the dataset penalizes away the
amount of variance in the electrophysiological data that can be
explained by experimental metadata.

Electrophysiological property correlation and neuron type similar-
ity analyses. For analysis of electrophysiological and neuron type
correlations, we first pooled data by averaging measurements col-
lected within the same neuron type. We then defined each neuron type
using its vector of six electrophysiological measurements. We quan-
tified correlations between pairs of electrophysiological properties
using Spearman’s correlation, which assesses the rank correlation and
allows for detection of relationships that are monotonic but not
necessarily linear. We used the Benjamini-Hochberg false discovery
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rate procedure to control for multiple comparisons performed in the
pairwise correlation analysis.

To quantify how much variance across electrophysiological prop-
erties could be explained by subsequent principal components (PCs),
we needed to first account for missing or unobserved measurements
within our dataset. For example, some neurons did not have a reported
measurement for �m or AP threshold (APthr) within our dataset. To
address this issue of missing data (Little and Rubin 2002), we used
probabilistic principal component analysis (pPCA), a modification of
traditional PCA that is robust to missing data. To further mitigate the
problem of missing data, in this analysis we only considered neuron
types that were defined by at least three different articles and with no
more than two of the six total electrophysiological properties missing;
after this filtering step, �10% of total electrophysiological observa-
tions were missing.

To quantify the electrophysiological similarity of neuron types, we
calculated the pairwise Euclidean distances between pairs of neuron
types defined by the vector of six electrophysiological properties and
used a dendrogram analysis to sort neuron types on the basis of
electrophysiological similarity. Missing or unobserved electrophysio-
logical measurements were imputed using pPCA, as described above.
Here, we chose to be agnostic about the relative importance of each
biophysical property and weighted biophysical properties based solely
on their relative measurement uncertainty (see Fig. 2C for definition).
Thus properties that tend to show greater cross-study variability (such
as �m) will be less downweighted in this analysis relative to more
reliable measurements like Vrest. Empirically, we found this weighting
to help further mitigate unaccounted-for measurement and method-
ological variability.

The dendrogram, D, denoting the hierarchical similarity among
neuron types, was constructed using linkages computed by Ward’s
minimum variance method. We used multiscale bootstrap resampling
to assess the statistical significance of subtrees of D using the pvclust
package in the language R (Felsenstein 2004; Suzuki and Shimodaira
2006) (referred to as the approximately unbiased P value, see Fig. 5).
A detailed description of the pvclust algorithm methodology is pro-
vided in the APPENDIX.

Acute Slice Electrophysiology

Animals. Hippocampal CA1 pyramidal cell recordings were con-
ducted using postnatal day (P)15–18 M72-GFP mice (Potter et al.
2001) and Thy1-YFP-G mice (Feng et al. 2000). Main olfactory bulb
mitral cell recordings were conducted using P15-18 M72-GFP, Thy1-
YFP-G, and C57BL/6 mice. A subset of data from these neurons has
been published previously (Burton and Urban 2014). Main olfactory
bulb granule cell recordings were conducted using P18-22 C57BL/6
and albino C57BL/6 mice. Neocortical basket cell recordings were
conducted using a P26 parvalbumin reporter mouse, resulting from a
cross between Pvalb-2A-Cre (Allen Institute for Brain Science) and
Ai3 (Madisen et al. 2010) lines. Striatal medium spiny neuron record-
ings were conducted using P14-17 M72-GFP mice. A total of 20 mice
of both sexes were used in this study. Animals were housed with
littermates in a 12:12-h light-dark cycle. All experiments were com-
pleted in compliance with the guidelines established by the Institu-
tional Animal Care and Use Committee of Carnegie Mellon Univer-
sity, which approved all procedures.

Slice preparation. Mice were anesthetized with isoflurane and
decapitated into ice-cold oxygenated dissection solution containing
the following (in mM): 125 NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3,
1.25 NaH2PO4, 3 MgCl2, and 1 CaCl2. Brains were rapidly isolated
and acute slices (310-�m thick) prepared using a vibratome
(VT1200S; Leica or 5000mz-2; Campden Instruments). Slices recov-
ered for 30 min in �37°C oxygenated Ringer’s solution that was
identical to the dissection solution except for lower Mg2� concentra-
tions (1 mM MgCl2) and higher Ca2� concentrations (2 mM CaCl2).
Slices were then stored in room temperature oxygenated Ringer’s

solution until recording. Parasagittal slices were used for hippocampal
and striatal recordings. Coronal slices were used for neocortical
recordings. Horizontal slices were used for main olfactory bulb
recordings.

Recording. Slices were continuously superfused with oxygenated
Ringer solution warmed to 37°C during recording. Cells were visu-
alized using infrared differential interference contrast video micros-
copy. Hippocampal CA1 pyramidal cells (n � 10) were identified by
their large soma size, pyramidal shape, and position within CA1.
Neocortical basket cells (n � 5) were identified by expression of YFP
fluorescence. Main olfactory bulb mitral cells (n � 10) were identified
by their large cell body size and position within the mitral cell layer.
Main olfactory bulb granule cells (n � 9) were identified by their
small cell body size and position within the mitral cell or granule cell
layers. Striatal medium spiny neurons (n � 8) were identified by their
extensively spine-studded dendritic arbors viewable under epifluores-
cence through Alexa Fluor 594 cell fills. Whole cell patch-clamp
recordings were made using electrodes (final electrode resistance:
6.1 � 1.1 M�, � � �; range: 4.4–8.7 M�) filled with the following
(in mM): 120 K-gluconate, 2 KCl, 10 HEPES, 10 Na-phosphocre-
atine, 4 Mg-ATP, 0.3 Na3GTP, 0.2–1.0 EGTA, 0–0.25 Alexa Fluor
594 (Life Technologies), and 0.2% Neurobiotin (Vector Labs). Cell
morphology was reconstructed under a 	100 oil-immersion objective
with Neurolucida (MBF Bioscience). No cells included in this dataset
exhibited gross morphological truncations. Mitral cells were recorded
in the presence of CNQX (10 �M), DL-APV (50 �M), and Gabazine
(10 �M) to limit the influence of spontaneous synaptic long-lasting
depolarizations (Carlson et al. 2000) on measurements of biophysical
properties. Data were low-pass filtered at 4 kHz and digitized as 10
kHz using a MultiClamp 700A amplifier (Molecular Devices) and an
ITC-18 acquisition board (Instrutech) controlled by custom software
written in IGOR Pro (WaveMetrics). The liquid junction potential
(12–14 mV) was not corrected for. Pipette capacitance was neutral-
ized and series resistance was compensated using the MultiClamp
Bridge Balance operation and frequently checked for stability during
recordings. Series resistance was maintained below �20 M for all
pyramidal cell, mitral cell, basket cell, and medium spiny neuron
recordings (14.0 � 2.7 M�, � � �; range: 8.4–20.1 M�). Higher
series resistance (30.7 � 6.2 M�, � � �; range: 23.5–43.0 M�) was
permitted in granule cell recordings due to their small (�10 �m) soma
sizes. After determination of each cell’s native Vrest, current was
injected to normalize Vrest to 
65, 
58, 
65, 
70, and 
80 mV for
pyramidal cells, mitral cells, granule cells, basket cells, and medium
spiny neurons, respectively, before determination of other biophysical
properties. In preliminary experiments, we also recorded from layer
5/6 neocortical pyramidal cells. However, these recordings were not
further pursued due to the extensive electrophysiological and mor-
phological heterogeneity observed within this broad category of
neuron type.

Analysis. Vrest was determined immediately after cell break in. �m

Was calculated from a single-exponential fit to the initial membrane
potential response to a hyperpolarizing step current injection. Rinput

was calculated as the slope of the relationship between a series of
hyperpolarizing step current amplitudes (that evoked negligible mem-
brane potential “sag”) and the steady-state response of the membrane
potential to injections of those step currents. In a subset of recordings,
Rinput was also calculated as the steady-state response of the mem-
brane potential to a single step current injection (evoking a �5-mV
hyperpolarization) averaged across 50 trials. Both methods yielded
equivalent results. To determine action potential properties of each
neuron, a series of 2-s-long depolarizing step currents was injected
into the neuron. The first action potential evoked by the weakest
suprathreshold step current (i.e., the rheobase input) was used to
determine the action potential properties of the neuron. APthr was
calculated as the first point where the membrane potential derivative
exceeded 20 mV/ms. AP amplitude (APamp) was measured from the
point of threshold crossing to the peak voltage reached during the
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action potential. This amplitude was then used to determine APhw,
calculated as the full action potential width at half-maximum ampli-
tude of the action potential.

For the confusion matrix analysis (see Fig. 3), we used a Euclidean
distance approach identical to that used in the analysis of electrophys-
iological neuron type similarity. Specifically, we represented each
recorded single cell via its measurements along the six major electro-
physiological properties. We then compared the similarity of each
recorded neuron to the mean electrophysiological measurements of
each of the five corresponding “canonical” neuron types from Neu-
roElectro, after either, first, adjusting the filtered NeuroElectro data to
the methodological conditions used in our laboratory or using the raw
and unfiltered data values from NeuroElectro, unnormalized for meth-
odological differences. We classified each recorded single cell to the
most similar of the canonical NeuroElectro neuron types by finding
the NeuroElectro neuron type with the smallest Euclidean distance to
the single cell, forming the basis for the confusion matrix.

Data and Code Availability

The NeuroElectro dataset and spreadsheets listing mined publica-
tions, neuron types, and electrophysiological properties are provided
at http://neuroelectro.org/static/src/ad_paper_supp_material.zip. The
analysis code used here is available at http://github.com/neuroelectro.

RESULTS

Building an Electrophysiological Database by Mining the
Research Literature

To make use of the formidable amount of neuronal electro-
physiological data present within the research literature, we
developed methods to attempt to “mine” such data from the
text of published papers. While forgoing the difficulties of
recording anew from multiple neuron types and brain areas,
such a data-mining approach is not without its own challenges.

These challenges include inconsistencies in published neuron
naming schemes (Ascoli et al. 2008), in how electrophysiolog-
ical properties are defined and calculated, and in experimental
conditions themselves (Kandel et al. 2013). However, we
reasoned that these limitations could potentially be overcome,
by capitalizing on the redundancy of published values and the
presence of informal community-based reporting standards
(Ascoli et al. 2008; Toledo-Rodriguez et al. 2004). Our hope
was thus to produce a unified dataset of sufficient quality for
use in subsequent meta-analyses, and furthermore, that the
dissemination of such a resource would encourage better stan-
dardization and consistency of future data collection.

We built a database, NeuroElectro, that links specific neuron
types to measurements of biophysical properties reported
within published research articles (Fig. 1A). Specifically, from
331 articles, we extracted and manually curated information on
basic biophysical properties of 97 neuron types recorded dur-
ing normotypic (i.e., “control”) conditions. Briefly, our mining
strategy follows a three-stage process (detailed in Tripathy et
al. 2014). First, we developed automated text-mining algo-
rithms (Ambert and Cohen 2012; French et al. 2009; Yarkoni
et al. 2011) to identify and extract content related to biophys-
ical properties and experimental conditions. Our algorithms
extracted reported mean biophysical measurement values, re-
flecting pooled values computed across multiple neurons
within a type. Second, we manually curated the mined content,
taking care to correctly label misidentified neuron types or
electrophysiological properties. To help categorize the neuron
types recorded within each article, we used the semistandard-
ized listing of expert-defined neuron types provided by Neu-
roLex (Larson and Martone 2013; Shepherd 2003). Finally, we
manually standardized the extracted electrophysiological val-
ues to a common set of units (e.g., gigaohm to megohm) and

Fig. 1. Schematic of NeuroElectro database construction and
example electrophysiological measurements. A: semiauto-
mated text-mining algorithms were applied to journal articles
to extract neuron type-specific biophysical measurements and
experimental conditions. B–G: example electrophysiological
measurements extracted from the research literature for cer-
ebellar Purkinje cells, CA1 pyramidal cells, cortical basket
cells, ventral tegmental area dopaminergic cells, and striatal
medium spiny neurons (abbreviated as CB, Purk; CA1, PC;
Ctx, BC; VTA, DA; and Str, MSN). Vrest, resting membrane
potential; Rinput, resistance input; �m, membrane time con-
stant; APamp, APhw, and APthr, action potential amplitude,
half-width, and threshold. Each circle denotes the value of the
mean biophysical measurement value reported within an
article.
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calculation conventions where possible (see APPENDIX). We
found the accuracy for data categorization and extraction to be
96% overall during a systematic QC audit (see APPENDIX),
which we deemed to be of sufficient quality for further meta-
analyses.

A sample of the resulting data is shown in Fig. 1 and the
dataset in its entirety can be interactively explored through our
web interface at http://neuroelectro.org. The dataset reflects
known features of several neuron types; for example, cortical
basket cells have narrow action potentials (Markram et al.
2004) and striatal medium spiny neurons rest at relatively
hyperpolarized potentials (Gertler et al. 2008). In this study, we
have focused our meta-analyses on six commonly and reliably
reported biophysical properties: resting membrane potential,
input resistance, membrane time constant, spike half-width,
spike amplitude, and spike threshold (abbreviated as Vrest,
Rinput, �m, APhw, APamp, APthr, respectively). Other parameters,
such as spike afterhyperpolarization amplitude and time
course, are recorded in NeuroElectro, but we chose not to not

include them in the following analyses due to questions about
the consistency of their reporting in the literature.

Experimental Metadata Explain Cross-Study Variance
Among Electrophysiological Measurements

Our literature-based approach relies on pooling information
across articles, which has the inherent advantage of distilling
the consensus view of several expert investigators and labora-
tories. However, data collected under different experimental
conditions may not be directly comparable. For example, Rinput
tends to decrease as animals age (Okaty et al. 2009; Zhu 2000).
Because NeuroElectro measurements are randomly sampled
from the literature, relationships between experimental condi-
tions (“metadata”) and electrophysiological measurements
(“data”) should also be reflected within the dataset (Fig. 2, A
and B). By annotating each electrophysiological measurement
in our database with a corresponding set of experimental
metadata (Fig. 2A), we were able to address the following three

Fig. 2. Methodological differences significantly explains ob-
served variability in literature-mined electrophysiological data.
A: cartoon illustrating metadata-based NeuroElectro data nor-
malization. B: example data showing how measured values of
Rinput vary as a function of recording electrode type and animal
age. C: variance explained by statistical models for each elec-
trophysiological property when only neuron type information is
used (black) and when neuron type plus all metadata attributes
are used (red). Error bars indicate SD, computed from 90%
bootstrap resamplings of the entire dataset. D–F: example
relationships between specific metadata predictors and varia-
tion in electrophysiological properties. Dots show model-ad-
justed electrophysiological measurements after accounting for
specific differences across neuron types. F: refers to correction
of liquid junction potential (“jxn”). Asterisks indicate popula-
tion mean and error bars indicate SD. G: influence of individual
metadata predictors in helping explain variance in specific
electrophysiological properties. Heatmap values indicate rela-
tive improvement over the model that includes neuron type
information only. Circles indicate where the regression model
including a metadata attribute was statistically more predictive
than the model with neuron type information alone (P � 0.05,
ANOVA). PrepType label indicates in vitro vs. in vivo.
H: example data before (black) and after using statistical
models to adjust for differences in metadata among electro-
physiological measurements (red). Measurements become less
variable and skewed after adjustment for methodological
differences.
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questions. First, can experimental metadata be used to account
for and even correct for the variability of data reported across
studies? Second, what is the influence of specific experimental
conditions (e.g., recording temperature and electrode type) on
measurements of biophysical properties? Third, what is the
residual variability in reported values for a given neuron type
after differences in several experimental conditions have been
accounted for?

We used linear regression models to characterize the rela-
tionship between electrophysiological measurements and ex-
perimental metadata (after appropriate data filtering, like re-
moving data from nonrodent species). We first asked to what
extent the variability observed among electrophysiological
measurements could be explained by neuron type alone (i.e.,
how consistent are measurements of the same neuron type from
article-to-article). We found that Vrest was reported fairly con-
sistently (Fig. 2C; adj. R2 � 0.6; i.e., 60% of the variability in
Vrest across cells was explained by cell type). However, most
properties, such as �m and APthr, had measurements that
differed greatly across studies recording from the same neuron
type (adj. R2 � 0.25). Thus there exists a large amount of
variance in electrophysiological data that is unexplained by
neuron type alone.

We found in many cases, however, that experimental meta-
data could significantly explain the variability in reported
electrophysiological data (Fig. 2, D–F, summary in G). For
example, knowing whether neurons were recorded using patch
vs. sharp electrodes explained a substantial fraction of the
observed variance in Rinput, with sharp electrodes yielding on
average �100 M� lower Rinput than patch electrodes (Fig. 2D).
Thus the dataset inherently reflects a historical controversy
when the patch-clamp technique was first introduced and
similar large discrepancies were observed in Rinput measure-
ments made with patch vs. sharp electrodes (Spruston and
Johnston 1992). Collectively, incorporating multiple experi-
mental metadata factors accounted for considerably more mea-
surement variability than neuron type alone (Fig. 2B; details in
MATERIALS AND METHODS). Importantly, these regression models
provide quantitative relationships that can be used as “correc-
tion factors” to adjust or normalize each electrophysiological
measurement for multivariate differences in recording prac-
tices across studies (Fig. 2, A and H). Such adjustments are
conceptually analogous to “Q10” correction factors, often used
to systematically correct for temperature-dependent kinetic
reaction rates, for example, in ion channel gating (Hille 2001).

As a caveat, we note that there still remained a considerable
amount of unexplained variance in electrophysiological mea-
surements, even after metadata adjustment. This variance
likely reflects the following: 1) within-type neuronal variability
(Druckmann et al. 2012; Padmanabhan and Urban 2010; Tri-
pathy et al. 2013); 2) additional experimental conditions not
yet considered, like recording solution contents or overall
preparation and recording quality; and 3) subtle differences in
how investigators define electrophysiological properties (e.g.,
see APPENDIX and DISCUSSION).

Experimental Validation of NeuroElectro Data Before and
After Metadata Normalization

To directly validate NeuroElectro dataset measurements and
our metadata normalization procedure, we recorded from a

subset of commonly studied neuron types, including CA1
pyramidal cells, main olfactory bulb mitral cells and granule
cells, neocortical basket cells, and striatal medium spiny neu-
rons (Fig. 3, A–F, and APPENDIX). Critically, to compare our de
novo recordings to NeuroElectro, we needed to first statisti-
cally normalize the NeuroElectro measurements to the exper-
imental conditions used in our laboratory, namely, our use of
whole cell patch-clamp recordings near physiological temper-
atures in acute slices from young-adult mice.

Comparing our single cell biophysical measurements to
NeuroElectro, we found close agreement to the global mean
and variance defining each NeuroElectro neuron type follow-
ing metadata adjustment (Fig. 3, E and F). To quantify this
agreement, we used a confusion matrix analysis to classify
each recorded cell to the corresponding most similar Neuro-
Electro neuron type. Experimentally recorded neurons were
almost always correctly matched to the corresponding Neuro-
Electro neuron type after metadata normalization (81% of cells;
34 of 42 neurons; chance � 20%; Fig. 3H) but matched consid-
erably less well when using the raw unnormalized NeuroElectro
values (48% of cells; 20 of 42 neurons; Fig. 3G).

We thus conclude that the electrophysiological data and
metadata populating NeuroElectro are sufficiently accurate and
that individual laboratories can reasonably expect their own
recordings to match NeuroElectro after adjusting for differ-
ences in experimental conditions. Moreover, this analysis un-
derscores that 1) single neurons, even of the same canonical
type, are biophysically heterogeneous (Padmanabhan and Ur-
ban 2010); and 2) incorrectly matched neurons may provide
clues to functional similarities across different neuron types.

Investigating Brain-Wide Correlations Among Biophysical
Properties

We next performed a series of analyses on our normalized
brain-wide electrophysiology dataset with the goal of learning
relationships between biophysical properties and diverse neu-
ron types. To further help reduce the influence of unaccounted-
for measurement and methodological variability, we first sum-
marized electrophysiological data at the neuron type level by
pooling measurements across articles. Correlating measure-
ments of biophysical properties across neuron types, we ob-
served a number of significant correlations (examples in Fig. 4,
A and B; summary in C and APPENDIX), including correlations
expected a priori, such as a positive correlation between Rinput
and �m. We also observed biophysical correlations more diffi-
cult to explain via first principles of neural biophysics, such as
anticorrelation between Rinput and APamp and correlation be-
tween APthr and APhw.

These correlations led us to use dimensionality reduction
techniques to determine if this six parameter description of
neuronal diversity could be further simplified. PCA (using
pPCA to help account for unobserved or “missing” biophysical
measurements not present in the database) showed that 50% of
the variance across neuron types could be explained by a single
component that largely reflects neuronal size (Fig. 4D). An
additional 22% can be explained by the second PC, which
roughly reflects basal firing rates and excitability. This analysis
is unique through its focus on brain-wide neuronal diversity;
moreover, such relationships may differ from previous corre-
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lations based on within neuron type variability (Druckmann et
al. 2012; Padmanabhan and Urban 2010).

Biophysical Similarity Identifies Approximately Six to Nine
Superclasses of Neuron Types

Lastly, we used NeuroElectro to gain insights into unknown
biophysical similarities among diverse neuron types, with the
goal of uncovering shared homology of function between
different neurons. For example, fast-spiking basket cells pop-
ulate multiple brain regions yet play similar functional roles
within their larger neural circuits (Markram et al. 2004; Mar-
tina et al. 1998). Our goal was to use the normalized electro-
physiological features to identify additional sets of biophysi-
cally similar neuron types that may also share computational
functions.

We performed a hierarchical clustering analysis of the neu-
ron types using the metadata-normalized NeuroElectro dataset.
Specifically, for each pair of neuron types, we assessed their
similarity by comparing the set of six basic biophysical prop-
erties defined above. Here, we chose to be agnostic about the
relative importance of each biophysical property and weighted
them by their relative measurement uncertainty (defined in Fig.
2C). We further mitigated unaccounted-for measurement and
methodological variability by focusing on neuron types re-
ported within at least three articles.

Several previously described classes of neuron types
emerged from this analysis, validating our unbiased clustering

approach (Fig. 5). For example, neocortical and hippocampal
basket cells were closely clustered, as were GABAergic me-
dium spiny neurons of both dorsal and ventral striatum. Like-
wise, we observed distinct clusters of both excitatory neocor-
tical and nonneocortical projection neuron types, differing with
respect to their Vrest. Furthermore, metadata normalization was
critical, as performing the analysis using the unnormalized
dataset gave paradoxical results; for example, that CA1 basket
cells were more similar to thalamic relay cells than to cortical
basket cells (see APPENDIX).

Novel superclasses of neuron types also emerged from our
clustering analysis. Foremost, we observed a cluster containing
main olfactory bulb Blanes and external tufted cells, dentate
gyrus hilar cells, and neocortical Martinotti cells that were
defined by a depolarized Vrest and relatively hyperpolarized
APthr. This is the first report identifying the shared electrophys-
iological similarity of these neuron types. Intriguingly, each of
these neuron types exhibits low-threshold and persistent spik-
ing activity at theta-band frequencies (Gentet et al. 2012;
Hayar et al. 2004; Larimer and Strowbridge 2010; Pressler and
Strowbridge 2006) and thus may share the computational
function of driving or triggering recurrent network theta
rhythms. Similarly, we observed a large cluster of high Rinput,
broad spiking cells from the midbrain and brainstem, including
the ventral tegmental area and locus coeruleus. Although
markedly diverse in their combined neurotransmitter pheno-
type, many of these neuron types nevertheless exhibit similar

Fig. 3. Direct comparison of NeuroElectro measurements to de
novo recordings. A and B: representative recordings of a neo-
cortical basket cell (Ctx, BC; A) and a main olfactory bulb
mitral cell (MOB, MC; B), showing responses to hyperpolar-
izing, rheobase, and suprathreshold current injections (top), and
action potential waveform (bottom). C and D: morphologies for
cells in A and B. E and F: database measurements for mitral and
basket cells before (crosses) and after (circles) metadata nor-
malization and corresponding Urban Lab single cell measure-
ments (triangles). Error bars indicate SD, computed across
database measurements within a neuron type. G and H: confu-
sion matrices highlighting classification of each recorded single
cell to corresponding aggregate NeuroElectro neuron type for
the raw (G) or metadata-normalized (H) NeuroElectro dataset.
Matrix y-axis indicates recorded neuron identity and number
within parentheses indicates n of recorded single cells per
neuron type. The x-axis indicates the predicted neuron type
based on biophysical similarity to NeuroElectro (i.e., perfect
classification is a diagonal along matrix). MOB, GC, main
olfactory bulb granule cell.
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activity patterns comprised of spontaneous “pacemaker”-like
tonic firing (Stern 2001; Tateno and Robinson 2011), a behav-
ior attributable to their distinctively depolarized Vrest.

Across the entire dataset, the major divisions among neuron
types tended to be in terms of apparent neuron size (e.g.,
variance in Rinput) and basal excitability (e.g., the relative
difference between Vrest and APthr). Additionally, we observed
a qualitative correspondence between biophysical similarity
and gross anatomical position, suggesting that shared precursor
lineage may yield similar biophysical properties (Ohtsuki et al.
2012). While this initial analysis is focused only on simple
biophysical properties, the observed “superclasses” are encour-
aging because they appear to also reflect gestalt spike pattern
phenotypes, such as pacemaker or low-threshold firing behav-
iors. In the future, incorporating additional parameters such as
spike afterhyperpolarization amplitudes or ionic currents will
likely further refine these superclasses and better define their
computational roles (Migliore and Shepherd 2005; Toledo-
Rodriguez et al. 2004).

DISCUSSION

Here, we have developed a general approach for reconciling
long-standing methodological inconsistencies that have made
brain-wide meta-analyses of electrophysiological data exceed-
ingly difficult. Using semiautomated text-mining (Tripathy et
al. 2014), we were able to accurately compile considerable
amounts of neuronal biophysical data from the vast research
literature. In our initial analyses of the extracted data within
NeuroElectro, we found that the raw biophysical data values
pertaining to the same neuron type were immensely variable
across studies. However, the size of this unprecedented collec-
tion of electrophysiological data enabled us to explicitly quan-
tify the relationships between experimental conditions and

biophysical properties. With these statistical models, we could
systematically normalize methodologically-inconsistent data to
account for basic differences in experimental protocols thereby
revealing the actual features of neuron types.

Following methodological normalization, we obtained, for
the first time, a unified reference dataset of neuronal biophysics
amenable to brain-wide electrophysiological comparisons.
Such metadata normalization was critical for comparing our de
novo single cell recordings to NeuroElectro data from other
neuron types. Our subsequent meta-analyses uncovered novel
electrophysiological correlations and several biophysically
based neuronal superclasses predicted to exhibit similar func-
tionality. For example, we identify a new superclass containing
hippocampal, neocortical, and olfactory bulb interneurons ca-
pable of persistent theta frequency activity–an emergent be-
havior attributable, in part, to a uniquely depolarized Vrest and
hyperpolarized APthr. While such clustering analyses are lim-
ited by the somewhat low resolution data currently available,
our approach is easily extensible to novel datasets, including
from raw electrophysiological traces or additional data modal-
ities like gene expression (Lein et al. 2007; McCarroll et al.
2014) or morphology (Ascoli et al. 2007).

Electrophysiological Standards Will Improve Future Meta-
Analyses

A major goal of our project was to rigorously identify the
sources of variance that limit the comparison of cross-study
electrophysiological data. However, a difficulty that we regu-
larly encountered came from the lack of formal standards used
in reporting electrophysiological data. For example, during the
NeuroElectro database QC audit, we observed at least six
different definitions for calculating Rinput (see APPENDIX). Rig-
orously accounting for such inconsistent definitions was further

Fig. 4. Exploring correlations between biophysical proper-
ties. A and B: example data showing pairwise correlations
among biophysical properties. Each data point corresponds
to measurements from a single neuron type (after averaging
observations collected across multiple studies and adjusting
for experimental condition differences). C: correlation ma-
trix of biophysical properties (Spearman’s correlation). Cir-
cles indicate where correlation of biophysical properties was
statistically significant (P � 0.05 after Benjamini-Hochberg
false discovery rate correction). D: variance explained
across probabilistic principal components of electrophysio-
logical correlation matrix in C.
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hindered by frequently insufficient methodological details de-
scribing how each property was defined and calculated (i.e.,
only �60% of electrophysiological measurements were de-
scribed with adequate detail to enable independent remeasure-
ment). Thus, to the extent that inconsistent electrophysiological
definitions yield systematically different measurements, na-
ively pooling across studies (as we have done here) will
continue to be a source of unexplained variance until more
complete reporting standards are adopted.

Similarly, our approach requires mapping each extracted
datum to a canonical neuron type. Since investigators use
different terminologies to refer to neuron types (Ascoli et al.
2008), we used the community-generated expert-defined list of
neuron types provided by NeuroLex (Hamilton et al. 2012;
Larson and Martone 2013; Shepherd 2003). This choice saves
us from the challenging task of redefining the canonical list of
neuron types, but at present these definitions currently “lump”
rather than “split” neuron types (e.g., “neocortex layer 5–6
pyramidal neuron”). While this lumping will also add unex-
plained variance to neuron type biophysical measurements, we
have built the mapping of data to neuron type in NeuroElectro
to be highly flexible, allowing NeuroElectro to similarly evolve
to match updates in neuron type definitions.

Based on our experiences, we strongly recommend the
usage of common definitions for basic biophysical measure-

ments (Toledo-Rodriguez et al. 2004) and neuron types
(Ascoli et al. 2008; Larson and Martone 2013). We also ask
that experimentalists report more basic electrophysiological
information within articles and, if possible, publish such
data using machine-readable formats like data tables. Sim-
ilarly, relevant experimental details should be clearly stated
within methods sections (Vasilevsky et al. 2013) (e.g.,
liquid junction potential correction and recording quality
criteria). In contrast to mandating that investigators stan-
dardize experimental protocols (e.g., using the same mouse
line or electrode pipette solution), these shifts in data
reporting practices we propose are simple, requiring mini-
mal changes to current workflows. Implementing these basic
recommendations will facilitate further data compilation
efforts and the ultimate development of a comprehensive
“parts list” of the brain (Insel et al. 2013).

Meta-Analysis as a Remedy for the Reproducibility Crisis in
Neuroscience

Biomedical science is perceived to be undergoing a “re-
producibility crisis” (Collins and Tabak 2014; Vasilevsky et
al. 2013), where up to half of published findings may be
false (Ioannidis 2005). In neurophysiology, such irreproduc-
ibility has been used to justify efforts by large single
institutes to standardize the recollection of large amounts of

Fig. 5. Hierarchical clustering of diverse neu-
ron types on the basis of biophysical similar-
ity. Neuron types sorted in order of biophys-
ical similarity (similarity indicated by levels
of dendrogram; dendrogram linkages com-
puted using Ward’s method and Euclidean
distances). Heatmap values indicate observed
neuron type-specific electrophysiological
measurements, red (blue) values indicate
large (small) values relative to mean across
neuron types. Statistical consistency of den-
drogram subtrees calculated via bootstrap re-
sampling [red values indicate approximately
unbiased (AU) P values (see MATERIALS AND

METHODS); P values rounded to nearest inte-
ger for visualization]. Dendrogram subtrees
are grouped into neuron type superclasses
indicated by text coloring (and are otherwise
black) based on P values and visual inspec-
tion. Only neuron types with measurements
defined by at least three articles and with at
least 4 (of the 6 total) biophysical properties
reported were used in this analysis. Probaba-
listic principal component analysis (PCA)
was used to impute unobserved measure-
ments, indicated via green dots on heatmap.
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data in the absence of an overarching question or hypothesis
(Frégnac and Laurent 2014; Kandel et al. 2013; Markram
2006).

We feel that our integrative meta-analysis approach offers a
potential alternative solution. Specifically, by aggregating vast
amounts of previously collected quantitive data and tagging these
with appropriate experimental metadata, the metadata can help
resolve systematic discrepancies between data values. Thus, as
opposed to the standard practice of only utilizing data from a
single study or laboratory, this “wisdom of the crowds” approach
explicitly links together the work of a wide community of inves-
tigators. Neuropsychiatric genetics provides an excellent example,
where investigators have identified greater numbers of genetic loci
conferring significant disease risk by pooling subject data across

sites and consortia (McCarroll et al. 2014). While such quantita-
tive meta-analyses are in their infancy in cellular and systems
neuroscience (Akil et al. 2011; Ferguson et al. 2014), we feel that
this approach increases the reach and impact of any one publica-
tion and has the potential to greatly increase the rate of progress in
our field.

APPENDIX

Figures A1 and A2 provide contextual data for the NeuroElectro
database, including the electrophysiological property standardization
and variability of experimental methodologies. Figures A3 and A4
include specific data collected during the quality control audit on the
variability of recording solutions used (Fig. A3) and inconsistencies

Fig. A1. Distribution of neuron types and electrophysiological
properties represented in NeuroElectro and illustration of
electrophysiological property standardization. A: frequency
histogram of distribution of neuron types vs. number of
articles containing information about each neuron type.
B: count of unique measurements of the 6 electrophysiological
properties explored in this article. C and D: illustration of
manual electrophysiological property standardization for Neu-
roElectro measurements extracted from literature. Example
afterhyperpolarization (AHP) amplitude measurements before
(C) and after standardization (D) to a common calculation
definition. Neurons plotted are cerebellar Purkinje cells, CA1
pyramidal cells, cortical basket cells, ventral tegmental area
dopaminergic cells, and striatal medium spiny neurons (ab-
breviated as Purk; CA1, pyr; Ctx, bskt; VTA, DA; and Str,
MSN; respectively). Each circle denotes the value of the mean
electrophysiological measurement reported within an article.

Fig. A2. Histograms of methodological variability in
neurophysiology literature reflected within the Neuro-
Electro database.
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among definitions used for common electrophysiological properties
(Fig. A4). Figure A5 shows a more detailed analysis for validating the
NeuroElectro database measurements against novel recorded data.
Figure A6 depicted an expanded analysis of correlations between
electrophysiological parameters. Figure A7 shows an analysis of

hierarchical clustering of neuron types on the basis of biophysical
similarity without first normalizing electrophysiological data for ex-
perimental condition differences. Figure A8 shows how the efficacy of
the metadata prediction models varies as a function of the total
NeuroElectro dataset size.

Fig. A3. Quantification of Mg2� and Ca2� recording solution
concentrations among articles in quality control subset.
A: 2-dimensional histogram of Mg2� and Ca2� recording
solution concentrations, reported in mM. The most commonly
reported concentration pair is 1 mM Mg2� and 2 mM Ca2�.
B: same as A, but reported as ratio of Mg2� and Ca2�

concentration; n � 27 articles quantified; 2 articles not shown
since in vivo recording conditions were used and no external
recording solution was reported.

Fig. A4. Compilation of different overall
methods for calculating electrophysiological
properties from the sample of curated articles
in the quality control (QC) audit. A–F: pie
charts and labels indicate breakdown of elec-
trophysiological calculation methodology and
n indicates number of property measurements
found in sample. Label “unreported” indicates
that no specific methodological description
could be found; n � 27 articles quantified in
QC subset. A: resting membrane potential
(Vrest), label “spontaneously active pseudo-
Vrest method” indicates methodology for quan-
tifying Vrest in spontaneously active neurons.
B: input resistance (Rinput), label “leak
method” indicates method for calculating
Rinput based on leak current. C: membrane time
constant (�m), label “peeling method to miti-
gate Ih” indicates method calculating �m that
corrects for sag current influence, label “Cs

�”
indicates the use of cesium ions in the elec-
trode pipette solution. D: action potential half-
width (APhw). Labels indicate different proto-
cols for eliciting spikes from which APhw is
calculated. By definition, all APhw measure-
ments have been quantified as AP full-width at
half-maximal amplitude, usually from the first
evoked AP in train. E: action potential ampli-
tude (APamp). Pie charts indicate methodology
for quantifying APamp (left) or protocol used to
elicit action potentials (right). Quantification
labels indicate whether APamp is defined as the
difference between AP threshold and peak or
Vrest and AP peak. F: action potential threshold
(APthr), label “max inflection point” indicates
identification of action potential threshold via
2nd derivative of voltage.

3484 ANALYZING BRAIN-WIDE NEUROPHYSIOLOGICAL DIVERSITY

J Neurophysiol • doi:10.1152/jn.00237.2015 • www.jn.org



Electrophysiological Database QC Assessment

To validate and QC the accuracy of our semiautomated data
extraction methods, we conducted a systematic audit of a randomly
chosen 10% of the algorithmically mined articles (n � 27 articles),
which had curated electrophysiological data obtained from a struc-
tured data table within an article.

Specifically, four curators (two pairs of two curators, each working
independently) were each tasked with validating the accuracy of
concept identification, data extraction, and data standardization. The
curators (S. J. Tripathy, S. D. Burton, M. Geramita, and R. C. Gerkin),
each had extensive experience reading literature and designing and
performing electrophysiology experiments. Curators were split into
pairs of two curators each, where each member of each pair indepen-

dently curated the same manuscripts, allowing an assessment of
intercurator consistency.

Below are listed the explicit instructions provided to each curator
during the 10% article QC audit to independently validate the accu-
racy of the NeuroElectro database.

1) Assess whether each neuron type mentioned within a HTML
data table had been mapped correctly (“yes,” “no,” or “ambiguous”),
based on the provided listing of canonical neuron types and their defini-
tions. “Ambiguous” responses and notations were used in cases where the
neuron type was not included in the provided neuron type list.

2) Assess whether electrophysiological property concepts had been
identified and mapped correctly (“yes,” “no,” or “ambiguous”). In
addition, curators were asked to explicitly describe how each electro-

Fig. A5. Validation of NeuroElectro database measurements with collection of raw data. A: representative targeted recording of a hippocampal CA1 pyramidal
cell (“CA1, PC”), showing anatomical position and morphological reconstruction (left), response to hyperpolarizing and depolarizing rheobase and suprathreshold
step current injections (middle), and action potential waveform (right). Anatomical scale bar � 200 �m. B–D: same as A for main olfactory bulb mitral cell (B;
“MOB, MC”), main olfactory bulb granule cell (C; “MOB, GC”), neocortical basket cell (D; “Ctx, BC”), and striatal medium spiny neuron (E; “Str, MSN”).
F: summary of targeted in vitro recordings and comparison to text-mined, metadata-adjusted values from NeuroElectro. D, dorsal; P, posterior; M, medial; A,
anterior. Morphological reconstructions (except the representative granule cell) have been moderately thickened to aid visualization of thinner processes.
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physiological property had been calculated and evaluate whether the
electrophysiological measurement could be in principle replicated
based on the provided methodological details. For example, for APthr,
if the article defined how threshold was computed (e.g., voltage
derivative threshold criterion) but did not describe how spikes were
evoked (e.g., rheobase current injection), then the APthr measurement
was judged as nonreplicable. Curators were instructed to attempt to
find such electrophysiological definitions if they were referenced
within a previous article. Curators were not allowed to report “am-
biguous” for evaluations of replicability.

3) Extract the electrophysiological data corresponding to each
neuron type-electrophysiological property pair as it directly ap-
pears in the formatted data table. Following this extraction, stan-
dardize the data value to the common calculation methodology
(e.g., measurements of input resistance reported in G� were
standardized to M�).

4) Assess whether methodological metadata concepts were identi-
fied and mapped correctly. In addition, curators were asked to curate
information for a small number of additional metadata concepts
(extracellular Mg2� and Ca2� concentrations, slice thickness, etc.) as
seed data for future metadata extraction algorithms.

To evaluate the outcome of the QC audit, we quantified agreement
between curators and between curators and NeuroElectro using a
simple percentage agreement measure. Concepts that were labeled as
ambiguous by the curator were not considered in the quantification.
Because we quantify NeuroElectro accuracy compared with the hu-
man curators, the intercurator agreement measure sets a rough upper
bound on the potential maximum accuracy of NeuroElectro. Specifi-

cally, the aggregate intercurator consistency measure of 95% sets the
upper bound of NeuroElectro accuracy at 97.5%.

QC results. We found close agreement between the manually
curated QC data and NeuroElectro, with 96% accuracy of the Neuro-
Electro database overall (specifically: 93% for neuron types, 99% for
electrophysiological concepts, 96% for experimental conditions, and
95% for correctly extracted and standardized electrophysiological
data). Intercurator agreement was also high, with 95% of concepts and
data identified and extracted identically across each pair of two
curators. Moreover, “mistakes” or miscurated entries within the Neu-
roElectro database usually represented cases where the underlying
concept or data were truly ambiguous (e.g., a neuron type that did not
explicitly exist within the NeuroLex list of neuron types).

Within the QC sample, we also analyzed how often authors use
different definitions for similar electrophysiological properties and
whether sufficient details were provided to independently replicate
each measurement. Strikingly, we found that sufficient methodologi-
cal details were provided to replicate only 42% of reported electro-
physiological measurements. While this measure of replicability is
inherently subjective and dependent on electrophysiological experi-
ence (yielding an intercurator agreement of only 65%), our results
nevertheless parallel other aggregate measures of methodological
rigor, such as antibody reporting (Vasilevsky et al. 2013).

Description of Dendrogram Bootstrap Resampling

We used multiscale bootstrap resampling to assess the statistical
significance of subtrees of D using the pvclust package in the lan-

Fig. A6. Expanded analysis of correlations among electrophysiological properties. A: Benjamini-Hochberg adjusted P values for pairwise electrophysiological
property correlation matrix shown in Fig. 4. B and C: coefficients corresponding to the first (B) and second (C) probabilistic principal component (pPC). D:
projection of neuron types onto space defined by first and second pPCs. Note that the first pPC qualitatively reflects the axis of electrotonically small (left) vs.
large (right) neuron types, while the second pPC qualitatively reflects the axis of basal excitability of neuron types, separating hyperpolarized (bottom) from
depolarized (top) resting membrane potentials.
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guage R (Suzuki and Shimodaira 2006). The pvclust dendrogram
multiscale bootstrap resampling algorithm proceeds as follows: spe-
cifically, given an n 	 p data matrix M (here, n refers to neuron types
and p refers to the 6 electrophysiological properties), pvclust first
generates a number of bootstrapped versions of M through randomly
sampling columns from M with replacement (10,000 bootstrap sam-
ples were used). For each bootstrapped data matrix, Mi, a dendrogram
Di was generated through hierarchical clustering. Next, for each
subtree in the original dendrogram D, the analysis assesses how often
the same subtree appears across the bootstrapped dendrograms
D1:10,000. Here, subtree equality is defined by subtrees that share
identical tree topology and neuron membership but does not assess
equality of branch lengths. Lastly, because the bootstrap probability is
known to be a downwardly biased measure for determining subtree
probability (Felsenstein 2004), pvclust corrects for this downward
bias by performing the entire bootstrap procedure multiple times at a
number of scales by resampling M to have differing numbers of
columns (here, we use 3 through 9 columns in M). This allows for the
bootstrap probability to be corrected, yielding the approximately
unbiased P value for each subtree.
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