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Abstract
The growth of the software industry has gone hand in hand with the
development of tools and cultural practices for ensuring the reliability of
complex pieces of software. These tools and practices are now acknowledged
to be essential to the management of modern software. As computational
models and methods have become increasingly common in the biological
sciences, it is important to examine how these practices can accelerate
biological software development and improve research quality. In this article,
we give a focused case study of our experience with the practices of unit
testing and test-driven development in , an open-science project OpenWorm
aimed at modeling . We identify and discuss theCaenorhabditis elegans
challenges of incorporating test-driven development into a
heterogeneous, data-driven project, as well as the role of model validation
tests, a category of tests unique to software which expresses scientific models.
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Introduction
Software plays an increasingly prominent role in the biological  
sciences. This growth has been driven by an explosion in the avail-
ability of data and the parallel development of software to store, 
share, and analyze this data. In addition, simulations have also 
become a common tool in both fundamental and applied research1,2. 
Simulation management (initialization, execution, and output han-
dling) relies entirely on software.

Software used for collaborative biological research has an addi-
tional level of complexity (beyond that shared by other widely-
used software) stemming from the need to incorporate and interact 
with the results of scientific research, in the form of large data-
sets or dynamical models. This added level of complexity suggests 
that technical tools and cultural practices for ensuring software  
reliability are of particular importance in the biological sciences3.

In this article, we discuss our experience in applying a number of 
basic practices of industrial software engineering—broadly known 
as unit testing and the related concept of test-driven development4–7 

—in the context of the OpenWorm project. OpenWorm (http://
www.openworm.org) is an international, collaborative open- 
science project aimed at integrating the world’s collective scientific 
understanding of the C. elegans round worm into a single computa-
tional model8. It is a diverse project incorporating data, simulations, 
powerful but intuitive user interfaces, and visualization. Since the 
goal of the project is to simulate an entire organism, the project 
and its underlying code are necessarily complex. The scope of the 
project is immense – OpenWorm has over fifty contributors from 
sixteen countries and projects divided into over forty-five sub-
repositories under version control containing a total of hundreds of 
thousands of lines of code. For a project of this magnitude to remain 

manageable and sustainable, a thorough testing framework and 
culture of test-driven development is essential4–7. In Figure 1, 
we show a diagrammatic overview of the many projects within 
OpenWorm and the relationship of testing to each of these. For 
extremely small projects, unit testing simply adds an overhead with 
little or no return on the time investment. As the project grows in 
size, however, the gains are quite significant, as the burden on the 
programmers of maintaining a large project can be substantially 
reduced.

In the code excerpts below, we will discuss 4 types of tests that are 
used in the OpenWorm code-base. They are:

•     Verification tests: These are tests of basic software 
correctness and are not unique to the scientific nature of 
the project.

•     Data integrity tests: These are tests unique to a project 
which incorporates data. Among other purposes, these tests 
serve as basic sanity checks verifying, for instance, that 
each piece of data in the project is associated with a scien-
tific paper and corresponding DOI.

•     Biological integrity tests: These are tests that verify 
correspondence with known information about static 
parameters that characterize C. Elegans, for example, the 
total number of neurons.

•     Model validation tests: These are tests unique to projects 
which incorporate dynamic models. Model validation tests 
(using the Python package SciUnit) verify that a given 
dynamic model (such as the behavior of an ion channel) 
generates output that is consistent with known behavior 
from experimental data.

Figure 1. Diagram of some of the key OpenWorm modules and their corresponding testing frameworks.
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Listing 1. Simple test for the multiplication operation.

1 def test_multiply():
2     """
3     Test our multiplication function against the
4     standard addition operator
5     """
6     assert multiply(3, 5) == 3 + 3 + 3 + 3 + 3

The target audience for this article is computational biologists who 
have limited experience with large software projects and are looking 
to incorporate standard industrial practices into their work, or who 
anticipate involvement with larger projects in either academia or 
industry. We also hope that the exposition will be accessible to other 
scientists interested in learning about computational techniques  
and software engineering. We hope to contribute to raising the 
quality of biological software by describing some basic concepts of 
software engineering in the context of a practical research project.

Unit testing for scientific software
A simple introduction to unit testing
The basic concept behind software testing is quite simple. Suppose 
we have a piece of code which takes some number of inputs and 
produces corresponding outputs. A unit test, verification test, or 
simply test is a function that compares an input-output pair and 
returns a boolean value True or False. A result of True indicates that 
the code is behaving as intended, and a result of False indicates that 
it is not, and consequently, that any program relying on that code 
cannot be trusted to behave as intended. 

Let us take a simple example. Suppose we have a function that 
takes a list of numbers and then returns them in sorted order, from  
lowest to highest. Sorting is a classic algorithmic task, and there 
are many different sorting algorithms with different performance  
characteristics; while the specific strategies they employ differ 
wildly, ultimately the result should be the same for any implemen-
tation. A unit test for one’s sorting algorithm should take as input 
a list of numbers, feed it to the sorting algorithm, and then check  
that each element in the output list is less than or equal to the one 
that comes after it. The unit test would return True if the output  
list had that property, and False if not.

If one has multiple implementations of a sorting algorithm, then one 
can use a reliable reference implementation as a testing mechanism 
for the others. In other words, a test might return True if a novel 
sorting algorithm gives the same result as one widely known to be 
valid. There are other strategies along these lines. For example, sup-
pose we have an implementation of an algorithm for multiplica-
tion called multiply. If we have a trusted implementation of an 
algorithm for addition, we can test that our multiplication algorithm 
works as expected by checking its behavior against the appropriate 
number of addition operations, e.g., multiply(3,5) = 3 + 
3 + 3 + 3 + 3. See Listing 1 for an implementation of this test 
in Python code.

In the previous example, the hypothetical unit test verified the core 
functionality of the algorithm. We had an algorithm that claimed to 

sort things, and we wanted to check that it worked as advertised. 
But there are many other kinds of tests that we might be compelled 
to write in order to know that our software is working correctly. 
For instance, what happens if we feed an empty list to our sorting 
algorithm (this is an example of an edge case)? Should it simply 
return the list, generate an error message, or both? What if a user 
accidentally gives the algorithm something that is not a list, say 
for example, an image? What should the error message be in this  
case? Should there be a single error message to cover all cases, or 
should the error message be tailored to the specific case at hand? 
One can easily write unit tests to verify that the correct behavior  
has been implemented in all of these cases.

The sum total of all of the desired behaviors of an algorithm is 
called a specification, or spec for short. For instance, the specifica-
tion for a sorting algorithm might look like the following:

•     When given a list of numbers, return the list sorted from 
smallest to largest.

•     When given a list of strings, return the list sorted in 
lexicographic order.

•     If the input is an empty list, return the empty list and do not 
generate an error message.

•     If the input is not a list, generate the error message “Input 
should be a list of real numbers or strings”.

•     If the input is neither a list of strings nor a list of numbers, 
return the same error message as above.

In Listing 2, we have given a suite of unit tests for a sorting  
algorithm called mySort based on this specification. The basic 
notion demonstrated in the context of the sorting algorithm  
extends to any piece of software. In OpenWorm, we make extensive 
use of unit testing to verify both the functional properties of the 
system, as well as the validity of the data and models that comprise 
the simulation. For instance, the two tests given below in Listing 3 
check that any worm model has 302 neurons, and that the number 
of synapses for a given type of neuron is in accordance with its 
known value from the scientific literature. We will examine the  
different types of tests in more detail in the next section.

In test-driven development, the specification for a piece of software, 
as well as the corresponding unit tests are written before coding 
the software itself 4,7. The argument for test-driven development is 
that having a well-developed testing framework before beginning 
the actual process of software development increases the likelihood 
that bugs will be caught as quickly as possible, and furthermore, 
that it helps the programmer to clarify their thought processes. 
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Listing 2. Sample tests for the sorting specification given in the text. The class SortingTest is a container for all of the individual tests 
that define the specification and can be extended if more tests are added.

 1 import random
 2 import unittest
 3 from my_code import my_sort
 4
 5 """
 6 Specification:
 7 1) When given a list of numbers,
 8 return the list sorted from smallest to largest.
 9
10 2) When given a list of strings,
11 return the list sorted in lexicographic order.
12
13 3) If the input is an empty list,
14 return the empty list and do not generate an error message.
15
16 4) If the input is not a list, generate the error message:
17 ‘‘Input should be a list of real numbers or strings’’.
18 """
19
20 class SortingTest(unittest.TestCase):
21     """A class implementing tests for a sorting function"""
22     def setUp(self):
23         self.f = my_sort # The function we will test is mySort
24
25     def test_number_sort(self):
26         """Test that numbers sort correctly"""
27         sorted_list = range(100000)
28         shuffled_list = random.shuffle(range(100000))
29         self.assertEqual(self.f(shuffled_list), sorted_list)
30
31     def test_string_sort(self):
32         """Test that strings sort correctly"""
33         word_file = ’/usr/share/dict/words’
34         words = open(word_file).read().splitlines()
35         sorted_words = words
36         shuffled_words = random.shuffle(words)
37         self.assertEqual(self.f(shuffled_words), sorted_words)
38
39     def test_empty_list(self):
40         """Test that empty list returns empty list"""
41         self.assertEqual(self.f([]), [])
42
43     def test_not_list(self):
44         """Test that invalid inputs generate correct error message"""
45         message = ’Input should be a list of real numbers or strings.’
46         self.assertRaisesRegexp(TypeError, message, self.f, ’a’)
47
48     def test_mixed_list(self):
49         """Test that mixed lists generate appropriate error message"""
50         mixed_list = [1, 2, ’a’, ’b’, 3]
51         message = ’Input should be a list of real numbers or strings.’
52         self.assertRaisesRegexp(TypeError, message, self.f, mixed_list)
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Listing 3. Excerpts from basic biological integrity tests for worm models. Given the size of the data repositories that OpenWorm relies 
upon, there are many simple tests such as these for ensuring the correctness of the associated data.

 1 import PyOpenWorm
 2 import unittest
 3
 4 class BiologicalIntegrityTest(unittest.TestCase):
 5     """
 6     Tests that read from the database and ensure that basic
 7     queries have expected results, as a way to ensure data quality.
 8     """
 9     def test_correct_neuron_number(self):
10         """
11         This test verifies that the worm model
12         has exactly 302 neurons.
13         """
14         net = PyOpenWorm.Worm().get_neuron_network()
15         self.assertEqual(302, len(set(net.neurons())))
16
17     def test_neuron_syn_degree(self):
18         """
19         This test verifies that the number of chemical synapses
20         associated with a given neuron AVAL is equal to 90.
21         """
22         aval = PyOpenWorm.Neuron(name=’AVAL’)
23         self.assertEqual(aval.Syn_degree(), 90)

In practice, while some tests are written before-hand, others are 
written in parallel with the rest of code development, or shortly 
after a piece of code is written but before it is integrated.

We mention here that, in the software community, a distinction 
is often made between unit tests and integration tests7. Strictly 
speaking, a unit test is a test which is applicable to the smallest, 
functional unit of code, and which has no external dependencies. 
On the other hand, tests which verify that different components 
work together are classified as integration tests; they verify that 
multiple components are integrated correctly. Some of the tests 
discussed below would strictly be considered integration tests. For 
the sake of simplicity, we will not distinguish between unit tests and 
integration tests in this article, and will refer to both as simply tests 
or unit tests. The primary distinction that we make here is instead 
between ordinary verification tests (to verify that code works as 
intended) and model validation tests (to validate a model against 
experimental data), which we discuss in more depth below.

Unit testing in OpenWorm
The software that makes up OpenWorm shares common ground 
with all other pieces of software, whether the sorting algorithm 
described above, a word processor, or an operating system.  
As a result, there are a range of unit tests that need to be written 
to ensure that basic pieces of the software infrastructure function  
correctly. Many of these tests will not be of any scientific signifi-
cance; they are simply sanity checks to ensure correct behavior for 
predictable cases. For instance, there are tests for checking that cer-
tain internal functions return the appropriate error messages when 

given incorrect inputs; there are tests for verifying that databases 
are loaded correctly; there are tests which check that functions 
adhere to a specific naming convention which will help automated 
tools process the code-base.

As a data-driven, scientific research project, however, OpenWorm 
also makes use of several other categories of tests that do not 
typically appear in software development. For instance, the  
PyOpenWorm subproject of OpenWorm is a simple API that 
provides a repository of information about C. elegans anatomy  
(https://github.com/openworm/PyOpenWorm). Given that the aim 
of OpenWorm is to produce a realistic simulation of the nematode, 
a carefully curated repository of empirical information is a corner-
stone of the project.

In the context of unit testing, there needs to be a category of 
tests that ensure that a curated datum has been appropriately 
verified and, furthermore, that its internal representation in the  
PyOpenWorm database is consistent. For example, for each “fact” 
in PyOpenWorm, there needs to be an associated piece of evidence, 
which serves as a reference. Practically, this evidence consists of a 
Digital Object Identifier9, or DOI, which corresponds to a research 
paper from which the fact was originally retrieved. For this class of 
tests, we traverse the database of facts and verify that for each fact 
there is an associated source of evidence, i.e., a DOI. Furthermore, 
these tests verify that each DOI is valid, and that the URL corre-
sponding to the DOI is accessible. There are also tests to check the 
internal consistency of the PyOpenWorm database, for instance, 
that neurons with the same name have the same identifier. 
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Listing 4 gives several excerpts from the PyOpenWorm test-
ing framework. It consists of tests to verify the references in the  
database, i.e., the DOIs which correspond to research papers.

In Listing 5, we give several tests for verifying the contents of 
the PyOpenWorm repository. Since each of the functions below 
is designed to test properties of Neuron objects, they are part 
of a single class called NeuronTest. These tests fall into the 
category of verification tests, and several of the tests, such as  
test_name and test_type simply check that the database is 
working correctly.

Model validation with SciUnit 
Many computational models in biology are compared only infor-
mally with the experimental data they aim to explain. In contrast, we 
formalize data-driven model validation in OpenWorm by incorpo-
rating tests to validate each dynamical model in the project against 
experimental data from the literature. As an example, consider 
a scenario where a developer creates a new model and provides 
parameter values for a simulation. In addition to running all of the 
verification tests described above, the model and parameter values 
must be validated with respect to established experimental results. 
In general, each summary output of the model is validated against 
a corresponding piece of data. One example of a summary model 

output is the “IV Curve” (i.e. current evoked in response to each 
of a series of voltage steps) of a given neuronal ion channel. We 
expect that our model will possess only ion channels which behave  
similarly to those observed experimentally, i.e. that the model IV 
Curve matches the experimentally-determined IV curve. If our 
model’s IV curve deviates too greatly from that observed experi-
mentally, the model developers should be alerted and provided with 
information that will allow them to investigate the source of the dis-
crepancy10. This may mean that parameter values must be modified, 
or in some cases the model itself must be substantially revised. In 
the case of OpenWorm, the necessary data for validating models is 
part of the PyOpenWorm and ChannelWorm subprojects (https://
github.com/openworm/ChannelWorm), which are repositories of 
curated information about C. elegans anatomy and ion channels.

Ordinary unit testing frameworks do not readily lend themselves 
to this kind of model validation. Rather than simply comparing an 
input-output pair, model validation tests should perform the same 
procedure that a scientist would perform before submitting a newly 
hypothesized model for publication. That is, they should generate 
some kind of summary statistic encoding the deviation between 
experimental data and model output. For example, in the case of 
an IV Curve, one might use the area between the model and data 
curves as a summary statistic. In the case of OpenWorm, because 

Listing 4. Verifying data integrity is an integral component of testing in OpenWorm. Below, we give several sample tests to verify 
the existence of valid DOIs, one technique used to ensure that facts in the PyOpenWorm repository are appropriately linked to the 
research literature.

 1 import _DataTest # our in-house setup/teardown code
 2 from PyOpenWorm import Evidence
 3
 4 class EvidenceQualityTests(_DataTest):
 5     """A class implementing tests for evidence quality."""
 6     def test_has_valid_resource(self):
 7     """Checks if the object has either a valid DOI or URL"""
 8     ev = Evidence()
 9     allEvidence = list(ev.load())
10     evcheck = []
11
12     """Loop over all evidence fields in the database"""
13     for evobj in allEvidence:
14         if evobj.doi():
15           doi = evobj.doi()
16           val = requests.get(’http://dx.doi.org/’ + doi)
17           evcheck.append(val.status_code == 200)
18
19         elif evobj.url():
20                  url = evobj.url()
21                  val = requests.get(url)
22                  evcheck.append(val.status_code == 200)
23
24         else:
25                 evcheck.append(False)
26
27     self.assertTrue(False not in evcheck)

Page 7 of 14

F1000Research 2016, 5:1946 Last updated: 24 AUG 2016

https://github.com/openworm/ChannelWorm
https://github.com/openworm/ChannelWorm


Listing 5. An assortment of verification tests from PyOpenWorm. These verify that the database behaves as we would expect it to, 
that properties of certain objects (Neuron objects, in this case) are correctly specified, and that the database is not populated with 
duplicate entries.

 1 import _DataTest # our in-house setup/teardown code
 2 from PyOpenWorm import Neuron
 3
 4 class NeuronTest(_DataTest):
 5     """
 6     AVAL, ADAL, AVAR, and PCVL are individual neurons in C. Elegans.
 7     AB plapaaaap is the lineage name of the ADAL neuron.
 8     A class implementing tests for Neuron objects.
 9     """
10     def test_same_name_same_id(self):
11         """
12         Test that two Neuron objects with the same name
13         have the same identifier().
14         """
15         c = Neuron(name=’AVAL’)
16         c1 = Neuron(name=’AVAL’)
17         self.assertEqual(c.identifier(query=True), c1.identifier(query=True))
18
19     def test_type(self):
20         """
21         Test that a Neuron’s retrieved type is identical to
22         its type as inserted into the database.
23         """
24         n = self.neur(’AVAL’)
25         n.type(’interneuron’)
26         n.save()
27         self.assertEqual(’interneuron’, self.neur(’AVAL’).type.one())
28
29     def test_name(self):
30         """
31         Test that the name property is set when the neuron
32         is initialized with it.
33         """
34         self.assertEqual(’AVAL’, self.neur(’AVAL’).name())
35         self.assertEqual(’AVAR’, self.neur(’AVAR’).name())
36
37     def test_init_from_lineage_name(self):
38         """
39         Test that we can retrieve a Neuron from the database
40         by its lineage name only.
41         """
42         c = Neuron(lineageName=’AB plapaaaap’, name=’ADAL’)
43         c.save()
44         c = Neuron(lineageName=’AB plapaaaap’)
45         self.assertEqual(c.name(), ’ADAL’)
46
47     def test_neighbor(self):
48         """
49         Test that a Neuron has a ’neighbors’ property, and that the
50         correct Neuron is returned when calling the ’neighbor’ function.
51         """
52         n = self.neur(’AVAL’)
53         n.neighbor(self.neur(’PVCL’))
54         neighbors = list(n.neighbor())
55         self.assertIn(self.neur(’PVCL’), neighbors)
56         n.save()
57         self.assertIn(self.neur(’PVCL’), list(self.neur(’AVAL’).neighbor()))
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these models are part of a continuously updated and re-executed 
simulation, and not simply static equations in a research paper, the 
model validation process must happen automatically and continu-
ously, alongside other unit tests.

To incorporate model validation tests, we use the Python package 
SciUnit11 (http://sciunit.scidash.org). While there are some prac-
tical differences between writing SciUnit tests and ordinary unit 
tests, the concepts are quite similar. For example, a SciUnit test 
can be configured to return True if the test passes, i.e. model output 
and data are in sufficient agreement, and False otherwise. Ultimately, 
a scientific model is just another piece of software—thus it can  
be validated with respect to a specification. In the case of dynami-
cal models, these specifications come from the scientific literature, 
and are validated with the same types of tests used before submit-
ting a model for publication. SciUnit simply formalizes this test-
ing procedure in the context of a software development work-flow.  

In Listing 6, we give an example of SciUnit tests using the  
neuron-specific helper library NeuronUnit (http://neuronunit.
scidash.org) for neuron-specific models.

In the preceding example, the statistic is computed within 
the SciUnit method judge, which is analogous to the  
self.assert statements used in the ordinary unit tests above. 
While the ordinary unit test compares the output of a function pair 
to an accepted reference output, judge compares the output of 
a model (i.e. simulation data) to accepted reference experimental 
data. Internally, the judge method invokes other code (not shown) 
which encodes the test’s specification, i.e. what a model must do to 
pass the test. The output of the test is a numeric score. In order to 
include SciUnit tests alongside other unit tests in a testing suite, 
they can be configured to map that numeric score to a boolean value 
reflecting whether the model/data agreement returned by judge  
is within an acceptable range.

Listing 6. Excerpt from a SciUnit test in ChannelWorm, a repository of information about ion channels. The test listed here 
verifies that a given ion channel has the correct current / voltage behavior. In terms of the informal classification of tests given above, 
this test falls under the category of model validation tests.

 1 import os, sys
 2 import numpy as np
 3 import quantities as pq
 4 from neuronunit.tests.channel import IVCurvePeakTest
 5 from neuronunit.models.channel import ChannelModel
 6 from channelworm.ion_channel.models import GraphData
 7
 8 # Instantiate the model; CW_HOME is the location of the ChannelWorm repo
 9 ch_model_name = ’EGL-19.channel’
10 channel_id = ’ca_boyle’
11 ch_file_path = os.path.join(CW_HOME, ’models’, ’%s.nml’ % ch_model_name)
12 model = ChannelModel(ch_file_path, channel_index=0, name=ch_model_name)
13
14 # Get the experiment data and instantiate the test
15 doi = ’10.1083/jcb.200203055’
16 fig = ’2B’
17 sample_data = GraphData.objects.get(
18         graph__experiment__reference__doi=doi,
19         graph__figure_ref_address=fig
20     )
21
22 # Current density in A/F and membrane potential in mV.
23 obs = zip(*sample_data.asarray())
24 observation = {’i/C’:obs[1]*pq.A/pq.F, ’v’:obs[0]*pq.mV}
25
26 # Use these observations to instantiate a quantitative test of the peak
27 # current (I) in response to a series of voltage pulses (V) delivered
28 # to the channel.
29 test = IVCurvePeakTest(observation)
30
31 # Judge the model output against the experimental data.
32 # Score will reflect a measure of agreement between I/V curves.
33 score = test.judge(model)
34 score.plot()
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The output of these model validation tests can also be inspected 
visually; Figure 2 shows the graphical output of the test workflow 
in Listing 6, and illustrates for the developers why the test failed  
(mismatch between current-voltage relationship produced by the 
model and the one found in the experimental literature). Further 
details about the output of this test – including the algorithm for 
computing model/data agreement, and the magnitude of disagree-
ment required to produce a failing score – can also be accessed via 
attributes and methods of the score object (not shown, but see 
SciUnit documentation). Consequently, full provenance infor-
mation about the test is retained.

Some computational science projects use ad-hoc scripts that  
directly run models and compare their outputs to reference data. 
This can be adequate in simple cases, but for larger projects, par-
ticularly distributed open-source projects with many contributors, 
the mixing of implementation and interface carries significant  
drawbacks12. For example, in order to record and store the mem-
brane potential of a model cell–to then compare to reference 
data–one could determine which functions are needed to run the  
simulation in a given simulation engine, extract the membrane 
potential from the resulting files, and then call those functions 
in a test script. However, this approach has three major flaws. 
First, it may be difficult for a new contributor or collaborator to  
understand what is being tested, as the test code is polluted with 
implementation details of the model that are not universally  
understood. Second, such a test will not work on any model that does 
not have the same implementation details, and thus has limited re- 
usability. Third, any changes to the model implementation will 
require parallel changes to the corresponding tests. In contrast, by 
separating tests from implementation details, tests can work on any 
model that implements a well-defined set of capabilities exposed 
via an interface. SciUnit does this by design, and SciUnit tests  

interact with models only through an interface of standard  
methods, for example, those provided by NeuronUnit. It is 
the responsibility of the model developer to match this interface 
by referencing standard methods, e.g. run, get_membrane_ 
potential, etc. Ultimately, the separation of implementa-
tion from interface leads to greater code clarity, more rapid  
development, and greater test re-usability.

Test coverage
The coverage of a testing suite is defined as the percentage of func-
tions in a code-base which are being tested. Since there is no rigor-
ous measure of what constitutes an adequate test, precise figures 
of test coverage should be interpreted with caution. Nonetheless, 
automated tools which analyze a code-base to determine test cover-
age can be a valuable resource in suggesting areas of a code-base 
in need of additional attention. Ideally, test coverage should be 
as high as possible, indicating that a large fraction of or even the  
entire code-base has been tested according to the intended  
specifications.

In PyOpenWorm, we make use several of pre-existing tools in the 
Python ecosystem for calculating test coverage of the Python code-
base, specifically, the aptly-named Coverage package13, as well 
as a GitHub extension dedicated to tracking the coverage of such 
projects known as Coveralls14. We adopted these tools in an 
effort to track which parts of the code-base need additional tests, 
and to give further backing to the test-driven culture of the project. 
PyOpenWorm currently has a test coverage of roughly 73%. If 
a contributor to PyOpenWorm introduces some new code to the 
project but does not add tests for it, the contributor will see that test 
coverage has been reduced. By making changes in test coverage 
explicit, for example with a badge on the project’s homepage, it is 
easier to track the impact of a growing code-base.

Figure 2. Graphical output from Listing 6, showing a failed test which alerts developers to an inconsistency between model and 
data.
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Continuous integration
Modern software is often written using a process of continuous 
integration or CI15,16, whereby the contributions of developers 
are integrated into a shared repository multiple times a day by 
an automated system. Typically, the output of a testing suite will 
determine whether or not the new contributions of a developer 
can be immediately integrated, or whether changes are required to 
avoid regression, i.e. failing unit tests that passed before the new  
contribution.

The benefits of continuous integration include early detec-
tion of bugs, eliminating development bottle-necks close to the 
release date (in the case of commercial software), and the regular  
availability of usable versions of the software. The process of con-
tinuous integration also encourages shifts in how developers think 
about structuring their code, and encourages regular, modular con-
tributions, rather than massive, monolithic changes that can be  
difficult to debug.

The entire OpenWorm project, including the PyOpenWorm and 
ChannelWorm modules make use of continuous integration 
(see Figure 3), taking advantage of a free service called Travis-CI 
(https://travis-ci.org) that tests changes to the code-base as they are 
pushed to the collaborative software development portal GitHub17. 
With each change, the entire project is built from scratch on a 
machine in the cloud, and the entire test suite is run. A build that 
passes all tests is a “passing build”, and the changes introduced 
will not break any functionality that is being tested. Because 
the entire project is built from scratch with each change to the  
code-base, the dependencies required to achieve this build must 
be made explicit. This ensures that there is a clear roadmap to the 
installation of dependencies required to run the project successfully 
– no hidden assumptions about pre-existing libraries can be made.

Skipped tests and expected failures
Suppose we have rigorously employed a process of test-driven 
development. Starting with a carefully designed specification, we 

Figure 3. Sample output from the OpenWorm continuous integration dashboard. Each row corresponds to a single set of contributions, 
known as a commit, submitted by a given developer. A commit is assigned a build number, which is given in the second column, and the 
result of the build process is indicated by the color of the corresponding row. If any of the unit tests fail, the build will be marked as failed  
(errored, in red), and the code contributions will be rejected. The developer is then responsible for identifying and fixing the corresponding 
bugs, and resubmitting their contributions to the code repository.
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have written a test suite for a broad range of functionality, and are 
using a continuous integration system to incorporate the ongoing 
contributions of developers on a regular basis. 

In this scenario, given that we have written a test suite prior to the 
development of the software, our CI system will reject all of our 
initial contributions because most tests fail, simply because the 
code that would pass the tests has not been written yet! To address 
precisely this scenario, many testing frameworks allow tests to be 
annotated as expected failures or simply to skip a given test entirely. 
The ability to mark tests as expected failures allows developers 
to incrementally enable tests, and furthermore draws attention to 
missing functionality. Consequently, the fraction of tests passed 
becomes a benchmark for progress towards an explicit development 
goal, that goal being encoded by the set of all tests that have been 
written.

The OpenWorm code-base makes extensive use of skipped tests  
and expected failures as a core part of the culture of test-driven 
development. In PyOpenWorm, for example, data integrity tests 
are often added in advance of the data itself being incorporated 
to the database. These tests provide a critical safety net as new  
information is curated from the scientific literature. Prior to the 
curation of this information, the tests are simply skipped. Once the 
information is curated, the tests are run, and indicate whether the 
information is usable by the project.

Frivolous tests and overly specific tests
Tests are typically sufficiently straightforward to write that it is 
easy to proliferate a testing suite with a large number of unneces-
sary tests. Often, these tests will be completely frivolous and cause 
no harm, beyond causing a testing suite to take much longer than 
necessary to run. However, tests which are overly specific can actu-
ally hinder the process of development. If there are tests which  
are too specific and constrain internal behavior that is not meant to 
be static, a developer’s contributions may be unnecessarily rejected 
during the process of continuous integration.

Conclusions
Our aim in this article is to give an overview of some basic devel-
opment practices from industrial software engineering that are of 
particular relevance to biological software. As a summary, we list 
here the types of tests used in OpenWorm. This list is simply an 
informal classification, and not a definitive taxonomy:

Verification tests (the usual suspects) These are tests common 
to all pieces of software and are not particularly relevant to the 
biological nature of the project. For instance, tests that verify that 
error handling is implemented correctly, that databases are accessed 
correctly, or that performing certain numerical operations produces 
results within an acceptable range.

Data integrity tests These are tests unique to a project that 
incorporates curated data. In the case of OpenWorm, these tests 
check (among other things) that every biological fact in the 
PyOpenWorm repository has an associated piece of experimental 
evidence, typically corresponding to a DOI, and that each of these 
DOIs is valid.

Biological integrity tests These tests verify that data tokens in the 
PyOpenWorm repository correspond to known information about 
C. Elegans. In contrast to the model validation tests described 
below, biological integrity tests typically only check static 
information/parameters.

Model validation tests These are tests specific to a project that 
incorporates scientific models. Model validation tests allow us to 
check that specific models, such as the behavior of ion channels, 
correspond to known behavior from the scientific literature. In 
effect, they extend the notion of unit testing to compare sum-
mary data and model output according to some summary statistic. 
In OpenWorm, the Python package SciUnit and derivative  
packages like NeuronUnit are used for writing tests that check 
the validity of scientific models against accepted data.

It should be clear from the above discussion and corresponding 
code examples that unit tests are fundamentally quite simple 
objects. Their behavior is no more than to compare input-output 
pairs, or in the case of SciUnit tests, that a given model’s output 
corresponds to a known reference from the scientific literature. The 
sophistication of testing frameworks is generally quite minimal 
when compared to the software itself being tested. While ad-hoc 
test scripts may be sufficient for small projects, for large projects 
with many contributors, a systematic approach to unit testing can 
result in significant efficiency gains and ease the burden of long-
term code maintenance. In the context of continuous integration, 
whereby a piece of software is built in an ongoing cycle as devel-
opers make changes and additions to the code-base, unit testing 
provides a valuable safety net that can prevent flawed code from 
prematurely being integrated. 

However, in spite of the conceptual simplicity and potential  
pitfalls of testing, its importance cannot be overstated. Writing  
tests requires careful thought and planning and some knowledge of 
the code-base being tested. Testing from a specification alone can 
result in inadequate testing, but tests which are too specific to the 
code-base can result in unnecessary roadblocks for developers.

Rather than being thought of as a sophisticated set of technical 
tools, unit testing should be viewed as a cultural practice for ensur-
ing the reliability of complex software. Perhaps a useful analogy 
is the powerful impact that checklists have had in clinical medi-
cine, aviation, construction, and many other industries18–20. Unit 
tests are sanity checks at a minimum, and can potentially guide the 
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scientific development of models when used in conjunction with 
experimental data. In order to reap their benefit, their existence and 
maintenance needs to be valued by all of the participants of the 
research and software development process. Finally, in order for 
this culture to be created, test-driven development should not be 
a heavy-handed imposition on the developers. Otherwise, it will 
be incorrectly perceived as a bureaucratic hurdle, rather than the  
valuable safety-net that it is.
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The authors present an interesting review of how they have applied traditional software testing
methodologies to the OpenWorm project. It provides a nicely balanced perspective on a subject that often
leads to strong opinions.

As they stay, the objective is to provide a focused case study of how testing is applied in the OpenWorm
project. As such, the title is somewhat generic: I would suggest adding OpenWorm in there and possibly
mentioning that this is a case study.
 
Probably the most novel part of the work is the incorporation of "Model Validation Tests" which serve to
verify that the components, such as ion channel models, from which the model is built, behave in line with
experimental data. The authors state that "Ultimately, a scientific model is just another piece of
software—thus it can be validated with respect to a specification." In a sense this is true, but, as Ref 10
points out  the specification in the literature is often vague, incomplete or generally erroneous.  The
SciUnit "judge" method appears to be the answer to this, replacing the usual software testing "assert"
function. Presumably a lot of the subtlety of the approach, and indeed the scientific input whether a model
is indeed a good match to experiments, is embedded in the implementation of the various "judge"
methods.  Although it is not essential for this paper it would be interesting to see a little more of how this is
done in the OpenWorm project.
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