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In vision and hearing, the wavelength of light and frequency 
of sound are highly predictive of color and tone. In contrast, 
it is not currently possible to predict the smell of a molecule 
from its chemical structure (1, 2). This stimulus-percept 
problem has been difficult to solve in olfaction because 
odors do not vary continuously in stimulus space, and the 
size and dimensionality of olfactory perceptual space is 
unknown (1, 3, 4). Some molecules with very similar 
chemical structures can be discriminated by humans (5, 6), 
and molecules with very different structures sometimes 
produce nearly identical percepts (2). Computational efforts 
developed models to relate chemical structure to odor 
percept (2, 7–11), but many relied on psychophysical data 
from a single 30-year-old study that used odorants with 
limited structural and perceptual diversity (12, 13). 

Twenty-two teams were given a large, unpublished psy-
chophysical data set collected by Keller and Vosshall from 
49 individuals who profiled 476 structurally and perceptual-
ly diverse molecules (14) (Fig. 1A). We supplied 4884 physi-
cochemical features of each of the molecules smelled by the 

subjects, including atom types, functional groups, and topo-
logical and geometrical properties that were computed us-
ing Dragon chemoinformatic software (version 6, Talete 
S.r.l., see supplementary materials) (Fig. 1B). 

Using a baseline linear model developed for the chal-
lenge and inspired by previous efforts to model perceptual 
responses of humans (8, 11), we divided the perceptual data 
into three sets. Challenge participants were provided with a 
training set of perceptual data from 338 molecules that they 
used to build models (Fig. 1C). The organizers used percep-
tual data from an additional 69 molecules to build a leader-
board to rank performance of participants during the 
competition. Toward the end of the challenge, the organiz-
ers released perceptual data from the 69 leaderboard mole-
cules so that participants could get feedback on their model 
and to enable refinement with a larger training + leader-
board data set. The remaining 69 molecules were kept as a 
hidden test set available only to challenge organizers to eval-
uate the performance of the final models (Fig. 1C). Partici-
pants developed models to predict the perceived intensity, 
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It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory 
percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. 
Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict 
sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately 
predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic 
descriptors (“garlic,” “fish,” “sweet,” “fruit,” “burnt,” “spices,” “flower,” and “sour”). Regularized linear 
models performed nearly as well as random forest–based ones, with a predictive accuracy that closely 
approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any 
molecule with high accuracy and also reverse-engineer the smell of a molecule. 
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pleasantness, and usage of 19 semantic descriptors for each of 
the 49 individuals and for the mean and standard deviation 
across the population of these individuals (Fig. 1, D and E). 

We first examined the structure of the psychophysical 
data using the inverse of the covariance matrix (15) calculat-
ed across all molecules as a proxy for connection strength 
between each of the 21 perceptual attributes (Fig. 1F and fig. 
S1). This yielded a number of strong positive interactions, 
including those between “garlic” and “fish”; “musky” and 
“sweaty”; and “sweet” and “bakery”; and among “fruit,” “ac-
id,” and “urinous”; and a negative interaction between 
pleasantness and “decayed” (Fig. 1F and fig. S1A). The per-
ception of intensity had the lowest connectivity to the other 
20 attributes. To understand whether a given individual 
used the full rating scale or a restricted range, we examined 
subject-level variance across the ratings for all molecules 
(Fig. 1G). Applying hierarchical clustering on Euclidean dis-
tances for the variance of attribute ratings across all the 
molecules in the data set, we distinguished three clusters: 
subjects that responded with high-variance for all 21 attrib-
utes (left cluster in green), subjects with high-variance for 
four attributes (intensity, pleasantness, “chemical,” and 
“sweet”) and either low variance (middle cluster in blue) or 
intermediate variance (right cluster in red) for the remain-
ing 17 attributes (Fig. 1G). 

We assessed the performance of models submitted to the 
DREAM Challenge by computing for each attribute the cor-
relation between the predictions of the 69 hidden test mole-
cules and the actual data. We then calculated a Z-score by 
subtracting the average correlations and scaling by the 
standard deviation of a distribution based on a randomiza-
tion of the test-set molecule identities. Of the 18 teams who 
submitted models to predict individual perception, Team 
GuanLab (author Y.G.) was the best performer with a Z-
score of 34.18 (Fig. 1H and table S1). Team IKW Allstars (au-
thor R.C.G.) was the best performer of 19 teams to submit 
models to predict population perception, with a Z-score of 
8.87 (Fig. 1H and table S1). The aggregation of all partici-
pant models gave Z-scores of 34.02 (individual) and 9.17 
(population) (Fig. 1H), and a postchallenge community 
phase where initial models and additional molecular fea-
tures were shared across teams gave even better models 
with Z-scores of 36.45 (individual) and 9.92 (population) 
(Fig. 1H). 

Predictions of the models for intensity were highly corre-
lated with the observed data for both individuals (r = 0.56; t 
test, P < 10–228) and the population (r = 0.78; P < 10–9) (Fig. 1, 
I and J). Pleasantness was also well predicted for individuals 
(r = 0.41; P < 10–123) and the population (r = 0.71; P < 10–8) 
(Fig. 1, I and J). The 19 semantic descriptors were more diffi-
cult to predict, but the best models performed respectably 
(individual: r = 0.21; P < 10–33; population: r = 0.55; P < 10–5) 

(Fig. 1, I and J). Previously described models to predict 
pleasantness (8, 10) performed less well on this data set 
than our best model (Fig. 1J). To our knowledge, there are 
no existing models to predict the 19 semantic descriptors. 

Random-forest (Fig. 2A and table S1) and regularized 
linear models (Fig. 2B and table S1) outperformed other 
common predictive model types for the prediction of indi-
vidual and population perception (Fig. 2, fig. S2, and table 
S1). Although the quality of the best-performing model var-
ied greatly across attributes, it was exceptionally high in 
some cases (Fig. 2C), and always considerably higher than 
chance (dotted line in Fig. 1I), while tracking the observed 
perceptual values (fig. S2 for population prediction). In con-
trast to most previous studies that attempted to predict  
olfactory perception, these results all reflect predictions of a 
hidden test set and avoid the pitfall of inflated correlations 
due to overfitting of the experimental data. 

The accuracy of predictions of individual perception for 
the best-performing model was highly variable (Fig. 2C), but 
the correlation of six of the attributes was above 0.3 (white 
circles in Fig. 2D). The best-predicted individual showed a 
correlation above 0.5 for 16 of 21 attributes (Fig. 2D). We 
asked whether the usage of the rating scale (Fig. 1G) could 
be related to the predictability of each individual. Overall, 
we observed that individuals using a narrow range of at-
tribute ratings—measured across all molecules for a given 
attribute—were more difficult to predict (Fig. 2, E and F, 
derived from the variance in Fig. 1G). The relations between 
range and prediction accuracy did not hold for intensity and 
pleasantness (Fig. 2, E and F). 

We next compared the results of predicting individual and 
population perception. The seven best-predicted attributes 
overall (intensity, “garlic,” pleasantness, “sweet,” “fruit,” 
“spices,” and “burnt”) were the same for both individuals 
and the population (Figs. 2D and 3A except “fish”). Simi-
larly, the seven attributes that were the most difficult to 
predict (“acid,” “cold,” “warm,” “wood,” “urinous,” “chemi-
cal,” and “musky”) were the same for both individual and 
population predictions (Fig. 2D and Fig. 3A), and except 
for a low correlation for “warm,” these attributes are anti-
correlated or uncorrelated to the “familiarity” attribute 
(14). This suggests some bias in the predictability of more 
familiar attributes, perhaps due to a better match to a 
well-defined reference molecule (14), and that, in this cate-
gorization, individual perceptions are similar across the 
population. For the population predictions, the first 10 
attributes have a correlation above 0.5 (Fig. 3A). The con-
nectivity structure in Fig. 1F follows the model’s perfor-
mance for the population (Fig. 3A). “Garlic”-“fish” (P < 10–4), 
“sweet”-“fruit” (P < 10–3), and “musky”-“sweaty” (P < 10–3) are 
pairs with strong connectivity that were also similarly diffi-
cult to predict. 
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We analyzed the quality of model predictions for specific 
molecules in the population (Fig. 3B). The correlation be-
tween predicted and observed attributes exceeded 0.9 (t test, 
P < 10–4) for 44 of 69 hidden test-set molecules when we 
used aggregated model predictions, and 28 of 69 when we 
averaged all model correlations (table S1). The quality of 
predictions varied across molecules, but for every molecule, 
the aggregated models exhibited higher correlations (Fig. 
3B). The two best-predicted molecules were 3-methyl cyclo-
hexanone followed by ethyl heptanoate. Conversely, the five 
molecules that were most difficult to predict were L-lysine 
and L-cysteine, followed by ethyl formate, benzyl ether, and 
glycerol (Fig. 3B and fig. S3). 

To better understand how the models successfully pre-
dicted the different perceptual attributes, we first asked how 
many molecular features were needed to predict a given 
population attribute. Although some attributes required 
hundreds of features to be optimally predicted (Fig. 3, C to 
E), both the random-forest and linear models achieved pre-
diction quality of at least 80% of that optimum with far 
fewer features. By that measure, the algorithm to predict 
intensity was the most complex, requiring 15 molecular fea-
tures to reach the 80% threshold (Fig. 3C). “Fish” was the 
simplest, requiring only one (Fig. 3D). Although Dragon fea-
tures are highly correlated, these results are remarkable 
because even those attributes needing the most molecular 
features to be predicted required only a small fraction of the 
thousands of chemoinformatic features. 

We asked what features are most important for predict-
ing a given attribute (figs. S4 to S6 and table S1). The Drag-
on software calculates a large number of molecular features 
but is not exhaustive. In a postchallenge phase (triangles in 
Fig. 1H), four of the original teams attempted to improve 
their model predictions by using additional features. These 
included Morgan (16) and neighborhood subgraph pairwise 
distance kernel (NSPDK) (17), which encode features 
through the presence or absence of particular substructures 
in the molecule; experimentally derived partition coeffi-
cients from EPI Suite (18); and the common names of the 
molecules. We used cross-validation on the whole data set to 
compare the performance of the same models using differ-
ent subsets of Dragon and these additional molecular fea-
tures. Only Dragon features combined with Morgan features 
yielded decisively better results than Dragon features alone, 
both for random-forest (Fig. 4A) and linear (Fig. 4B) models. 
We then examined how the random-forest model weighted 
each feature (table S1 for a similar analysis using the linear 
model). As observed previously, intensity was negatively 
correlated with molecular size but was positively correlated 
with the presence of polar groups, such as phenol, enol, and 
carboxyl features (fig. S6A) (1, 7). Predictions of intensity 
relied primarily on Dragon features. 

There is already anecdotal evidence that some chemical 
features are associated with a sensory attribute. For exam-
ple, sulfurous molecules are known to smell “garlic” or 
“burnt,” but no quantitative model exists to confirm this. 
Our model confirms that the presence of sulfur in the Drag-
on descriptors used by the model correlated positively with 
both “burnt” (r = 0.661; P < 10–62) (fig. S4A) and “garlic” (r = 
0.413; P < 10–22; table S1). Pleasantness was predicted most 
accurately using a mix of both Dragon and Morgan-NSPDK 
features. For example, pleasantness correlated with both 
molecular size (r = 0.160; P < 10–3) (9) and similarity to 
paclitaxel (r = 0.184; P < 10–4) and citronellyl phenylacetate 
(r = 0.178; P < 10–4) (fig. S6B). “Bakery” predictions were 
driven by similarity to the molecule vanillin (r = 0.45; P < 
10–24) (fig. S4B). Morgan features improved prediction in 
part by enabling a model to template-match target mole-
cules against reference molecules for which the training set 
contains perceptual data. Thus, structural similarity to van-
illin or ethyl vanillin predicts “bakery” without recourse to 
structural features. 

Twenty of the molecules in the training set were rated 
twice (“test” and “retest”) by each individual, providing an 
estimate of within-individual variability for the same stimu-
lus. This within-individual variability places an upper limit 
on the expected accuracy of the optimal predictive model. 
We calculated the test-retest correlation across individuals 
and molecules for each perceptual attribute. This value of 
the observed correlation provides an upper limit to any 
model, because no model prediction should produce a better 
correlation than data from an independent trial with an 
identical stimulus and individual. To examine the perfor-
mance of our model compared with the theoretically best 
model, we calculated a correlation coefficient between the 
prediction of a top-performing random-forest model and the 
test data. All attributes except “burnt” were statistically in-
distinguishable from the test-retest correlation coefficients 
evaluated at the individual level (Fig. 4C). The slope for the 
best linear fit of the test-retest and model-test correlation 
coefficients was 0.80 ± 0.02, with a slope of 1 expected for 
optimal performance (Fig. 4C). Similar results were ob-
tained using a model-retest correlation. Thus, given this 
data set, performance of the model is close to that of the 
theoretically optimal model. 

We evaluated the specificity of the predictions of the ag-
gregated model by calculating how frequently the predicted 
sensory profile had a better correlation with the actual sen-
sory profile of the target molecule than it did with the sen-
sory profiles of any of the other 68 molecules in the hidden 
test-set (Fig. 4, D and E). For 14 of 69 molecules, the highest 
correlation coincided with the actual sensory profile (P < 
10–11). For an additional 20%, it was second highest, and 65% 
of the molecules ranked in the top-ten predictions [Fig. 4F 
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and table S1; area under the curve (AUC) = 0.83]. The speci-
ficity of the aggregated model shows that its predictions 
could be used to reverse-engineer a desired sensory profile 
by using a combination of molecular features to synthesize a 
designed molecule. 

Finally, to ensure that the performance of our model 
would extend to new subjects, we trained it on random sub-
sets of 25 subjects from the DREAM data set and consistent-
ly predicted the attribute ratings of the mean across the 
population of the 24 left-out subjects (fig. S7A). To test our 
model across new subjects and new molecules, we took ad-
vantage of a large unpublished data set of 403 volunteers 
who rated the intensity and pleasantness of 47 molecules, of 
which only 32 overlapped with the stimuli used in the origi-
nal study (table S1). Using a random-forest model trained on 
the original 49 DREAM Challenge subjects and all the mole-
cules, we are able to show that the model robustly predicts 
the average perception of all of these molecules across the 
population (fig. S7B). 

The DREAM Olfaction Prediction Challenge has yielded 
models that generated high-quality personalized perceptual 
predictions. This work substantially expands on previous 
modeling efforts (2, 3, 7–11) because it predicts not only 
pleasantness and intensity, but also 8 out of 19 semantic 
descriptors of odor quality. The predictive models enable the 
reverse-engineering of a desired perceptual profile to identify 
suitable molecules from vast databases of chemical struc-
tures and closely approach the theoretical limits of accuracy 
when accounting for within-individual variability. Although 
highly significant, there is still much room for improving in 
particular the individual predictions. Although the current 
models can only be used to predict the 21 attributes, the 
same approach could be applied to a psychophysical data set 
that measured any desired sensory attribute (e.g., “rose,” 
“sandalwood,” or “citrus”). How can the highly predictive 
models presented here be further improved? Recognizing 
the inherent limits of using semantic descriptors for odors 
(12–14), we think that alternative perceptual data, such as 
ratings of stimulus similarity, will be important (11). 

What do our results imply about how the brain encodes 
an olfactory percept? We speculate that, for each molecular 
feature, there must be some quantitative mapping, possibly 
one to many, between the magnitude of that feature and the 
spatiotemporal pattern and activation magnitude of the as-
sociated olfactory receptors. If features rarely or never in-
teract to produce perception, as suggested by the strong 
relative performance of linear models in this challenge, then 
these feature-specific patterns must sum linearly at the per-
ceptual stage (19). Peripheral events in the olfactory sensory 
epithelium, including receptor binding and sensory neuron 
firing rates might have nonlinearities, but the numerical 
representation of perceptual magnitude must be linear in 

these patterns. It is possible that stronger nonlinearity will 
be discovered when odor mixtures or the temporal dynam-
ics of odor perception are investigated. Many questions re-
garding human olfaction remain that may be successfully 
addressed by applying this method to future data sets that 
include more specific descriptors; more molecules that rep-
resent different olfactory percepts than those studied here; 
and subjects of different genetic, cultural, and geographic 
backgrounds. 

Results of the DREAM Olfaction Prediction Challenge 
may accelerate efforts to understand basic mechanisms of 
ligand-receptor interactions, and to test predictive models of 
olfactory coding in both humans and animal models. Final-
ly, these models have the potential to streamline the pro-
duction and evaluation of new molecules by the flavor and 
fragrance industry. 
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Fig. 1. DREAM Olfaction Prediction Challenge. (A) Psychophysical data. (B) Chemoinformatic data. (C) 
DREAM Challenge flowchart. (D) Individual and population challenges. (E) Hypothetical example of 
psychophysical profile of a stimulus. (F) Connection strength between 21 attributes for all 476 molecules. 
Width and color of the lines show the normalized strength of the edge. (G) Perceptual variance of 21 attributes 
across 49 individuals for all 476 molecules at both concentrations sorted by Euclidean distance. Three clusters 
are indicated by green, blue, and red bars above the matrix. (H) Model Z-scores, best performers at left. (I and 
J) Correlations of individual (I) or population (J) perception prediction sorted by team rank. The dotted line 
represents the P < 0.05 significance threshold with respect to random predictions. The performance of four 
equations for pleasantness prediction suggested by Zarzo (10) [from top to bottom: equations (10, 9, 11, 7, 
12)] and of a linear model based on the first seven principal components inspired by Khan et al. (8) are shown. 
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Fig. 2. Predictions of individual perception. (A) Example of a random-forest algorithm that utilizes a subset 
of molecules from the training set to match a semantic descriptor (e.g., “garlic”) to a subset of molecular 
features. (B) Example of a regularized linear model. For each perceptual attribute yi, a linear model utilizes 
molecular features xi,j weighted by βi to predict the psychophysical data of 69 hidden test-set molecules, with 
sparsity enforced by the magnitude of λ. (C) Correlation values of best-performer model across 69 hidden 
test-set molecules, sorted by Euclidean distance across 21 perceptual attributes and 49 individuals. (D) 
Correlation values for the average of all models (red dots, mean ± SD), best-performing model (white dots), 
and best-predicted individual (black dots), sorted by the average of all models. (E) Prediction correlation of the 
best-performing random-forest model plotted against measured standard deviation of each subject’s 
perception across 69 hidden test-set molecules for the four indicated attributes. Each dot represents one of 
49 individuals. (F) Correlation values between prediction correlation and measured standard deviation for 21 
perceptual attributes across 49 individuals, color coded as in (E). The dotted line represents the P < 0.05 
significance threshold obtained from shuffling individuals. 
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Fig. 3. Predictions of population perception. (A), Average of correlation of population predictions. Error 
bars, SDs calculated across models. (B) Ranked prediction correlation for 69 hidden test-set molecules 
produced by aggregated models (open black circles; gray bars, SD) and the average of all models (solid black 
dots; black bars, SD). (C to E) Prediction correlation with increasing number of molecular features using 
random-forest (red) or linear (black) models. Attributes are ordered from top to bottom and left to right by the 
number of features required to obtain 80% of the maximum prediction correlation using the random-forest 
model. Plotted are intensity and pleasantness (C), and attributes that required six or fewer (D) or more than 
six features (E). The combined training + leaderboard set of 407 molecules was randomly partitioned 250 
times to obtain error bars for both types of models. 
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Fig. 4. Quality of predictions. (A and B) Community phase predictions for random-forest (A) and linear (B) 
models using both Morgan and Dragon features for population prediction. The training set was randomly 
partitioned 250 times to obtain error bars: *P < 0.05, **P < 0.01, ***P < 0.001, corrected for multiple 
comparisons [false discovery rate (FDR)]. (C) Comparison between correlation coefficients for model 
predictions and for test-retest for individual perceptual attributes by using the aggregated predictions from 
linear and random-forest models. Error bars reflect standard error obtained from jackknife resampling of the 
retested molecules. Linear regression of the model-test correlation coefficients against the test-retest 
correlation coefficients yields a slope of 0.80 ± 0.02 and a correlation of r = 0.870 (black line) compared with a 
theoretically optimal model (perfect prediction given intraindividual variability, dashed red line). Only the 
model-test correlation coefficient for “burnt” (15) was statistically distinguishable from the corresponding 
test-retest coefficient (P < 0.05 with FDR correction). (D) Schematic for reverse-engineering a desired 
sensory profile from molecular features. The model was presented with the experimental sensory profile of a 
molecule (spider plot, left) and tasked with searching through 69 hidden test-set molecules (middle) to find 
the best match (right, model prediction in red). Spider plots represent perceptual data for all 21 attributes, 
with the lowest rating at the center and highest at the outside of the circle. (E) Example where the model 
selected a molecule with a sensory profile 7th closest to the target, butyric acid. (F) Population prediction 
quality for the 69 molecules in the hidden test-set when all 19 models are aggregated. The overall area under 
the curve (AUC) for the prediction is 0.83, compared with 0.5 for a random model (gray dashed line) and 1.0 
for a perfect model. 
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