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Abstract It was recently proposed (Bushdid et al., 2014) that humans can discriminate between
at least a trillion olfactory stimuli. Here we show that this claim is the result of a fragile estimation
framework capable of producing nearly any result from the reported data, including values tens of
orders of magnitude larger or smaller than the one originally reported in (Bushdid et al., 2014).
Additionally, the formula used to derive this estimate is well-known to provide an upper bound, not
a lower bound as reported. That is to say, the actual claim supported by the calculation is in fact that
humans can discriminate at most one trillion olfactory stimuli. We conclude that there is no evidence
for the original claim.

DOI: 10.7554/eLife.08127.001

Introduction

A recent paper (Bushdid et al., 2014) proposed that humans can discriminate between at least
a trillion olfactory stimuli. Using that paper’s methods to reanalyze the data it presented, we show that
this estimate is problematically fragile. Specifically, it varies systematically and sensitively (over tens of
orders of magnitude, in both directions), for very modest changes in incidental experimental
and analysis parameters against which a result ought to be robust. Had the experiment enlisted ~ 100
additional subjects similar to the original ones, the same analysis would have concluded that
all possible stimuli are discriminable (i.e., that each of the more than 10%° olfactory stimuli possible in
their framework are mutually discriminable). By contrast, if the same experimental data were analyzed
using moderately more conservative statistical criteria, it would have concluded that there are fewer
than 5000 discriminable olfactory stimuli—no larger than the folk wisdom value that the new estimate
purports to replace.

Therefore, under this framework, data describing the same underlying perceptual abilities admit
a wide range of extremely disparate (varying over 25 orders of magnitude), yet unobjectionable
alternative conclusions (including both the largest and smallest possible estimates allowed by the
analysis framework). We conclude that the framework is unsound: there may be trillions of
discriminable olfactory stimuli, or more, or fewer, but the framework does not provide the means
for settling this question. Here we first demonstrate the framework’s fragility, and then explain the
sources of that fragility. For most of this paper, we remain agnostic about whether the framework is
conceptually sound, to highlight the fact that it has strictly methodological problems of a statistical
origin that do not depend on the validity of a competing set of assumptions.

We also show that the formula used to derive the estimated number of discriminable stimuli, given
an estimated perceptual limen, yields an upper bound, not a lower bound, meaning that any estimate
derived here or in (Bushdid et al., 2014), under any assumptions, is a maximum and not a minimum.
In other words, the original paper in fact supports the conclusion that humans can discriminate at most
one trillion olfactory stimuli (or more or fewer, due to the problem described above), a rather
uninspiring claim. In a concluding section, we explore possibilities for improving the estimate.
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elife digest Scientists are interested in the number of colors, sounds and smells we can
distinguish because this information can shed light onto how our brains process these senses both in
health and disease. It is relatively straightforward to determine how many colors we can see or
sounds we can hear because these stimuli are well defined by physical properties such as
wavelength. We know the range of wavelengths that the eye can see or the ear can hear, and we can
also understand how two such stimuli (e.g., red and blue) are arranged perceptually (think of a color
wheel). It is harder, however, to do the same for smell because most ‘olfactory stimuli’ consist of
mixtures of different odor molecules. Moreover, we understand much less about how olfactory
stimuli are arranged perceptually.

In 2014 researchers at Rockefeller University reported that humans can distinguish more than one
trillion smells from one another. To calculate this number the researchers tested the ability of human
subjects to discriminate between mixtures of different odor molecules. Each mixture consisted of 10,
20 or 30 molecules selected from a chemical library of 128 different odor molecules. Since each
mixture of 10 molecules could contain any 10 of the 128 molecules, more than 200 trillion
combinations were possible; the number of possible combinations for the 20- and 30-molecule
mixtures were even higher.

The aim of the experiment was to identify—by sampling from this very large number of
combinations—the number of molecules that two mixtures could have in common and still be
distinguishable to the typical person. The Rockefeller team used this number and a geometrical
analogy to conclude that humans could discriminate at least 1.72 trillion odors, which was much
higher than expected from previous reports and anecdotes.

Now Gerkin and Castro report that the claims made in the Rockefeller study are unsupported
because of flaws in the design of the analytical framework used to make sense of the data. In
particular, Gerkin and Castro report that the results are extremely sensitive to some parameters of
the experimental and analytical design, such as the number of subjects tested, whereas the results of
a robust analysis would not be so sensitive to such factors. By modestly varying any of these
parameters it is possible to obtain almost any value for the number of smells that can be
discriminated. Moreover, the geometrical analogy used set an upper bound on the final answer,
rather than a lower bound: in other words, even assuming that the rest of the analysis was robust, the
result should have been that humans can discriminate ‘'no more than’ 1.72 trillion smells rather than
‘at least’. In a separate paper Meister also reports that the 1.72 trillion smells claim is unjustified.
DOI: 10.7554/elife.08127.002

Problems with the estimate
The first main concern is that the estimated number of discriminable stimuli depends steeply,
systematically, and non-asymptotically on choices of arbitrary experimental parameters, among them
the number of subjects enrolled, the number of discrimination tests performed, and the threshold for
statistical significance. We show below that the order of magnitude claim of ‘one trillion olfactory
stimuli’ requires that those parameters assume a very narrow set of values. Certainly, the precise value
of an estimate may change as additional data are collected, but the estimate should not change in
expectation; it should not be possible to make an estimate arbitrarily large (or small), simply by
collecting more (or less) data. Similarly, the estimate itself should not become arbitrarily small or large
with adjustment of a significance criterion. Estimates that scale systematically with such incidental
parameter choices are considered statistically inconsistent (Figure 1). It is the inconsistency of the
present estimate that produces a tremendously large space of extremely different, yet unobjection-
able alternative conclusions that can be reached about the number of discriminable olfactory stimuli.
To illustrate that we can correctly recapitulate the analysis undertaken in (Bushdid et al., 2014),
Figure 2 shows our reproduction (using raw supplementary data from [Bushdid et al., 2014]) of two
critical figures from that paper (Bushdid et al., 2014), from which its main conclusion was drawn. See
Table 1 for definitions of parameters used here and in (Bushdid et al., 2014). Figure 3 and Table 2
quantify the fragility of this conclusion, by generating estimates using the same framework under
trivial alternative scenarios in which different numbers of subjects (or mixtures) were used, or different
choices of statistical threshold (a) were used for assessing discriminability. Thus, we produced all
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Figure 1. Consistency of an estimator. An estimator is
consistent if the resulting estimate asymptotically con-
verges (in expectation) as sample size increases (black
line). Uncertainty in the estimate (gray area) may shrink
with sample size, but the estimate itself should not
systematically change with sample size, and should
converge on the truth. Estimators without this property
are termed inconsistent (the blue line is a relevant
example), and are considered unreliable, as the result-
ing estimate can be heavily biased by the sample size. If
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values shown here by analyzing the data from
(Bushdid et al., 2014), using the methods
described therein, and varying only parameters.
Code to reproduce these and all subsequent
analyses is available at http://github.com/rger-
kin/trillion, documented at http://nbviewer.ipy-
thon.org/github/rgerkin/trillion/blob/master/
journal.ipynb.

In Bushdid et al., 2014's experimental frame-
work, there are three sets of experiments, varying
in the number of distinct molecular components
N per mixture tested. We consider the N = 30
case (without loss of generality) for which there
are ~10% possible olfactory stimuli, and for
which the smallest possible number of discrimi-
nable stimuli is ~4500 (see Equation 1 below).
Figure 3 and Table 2 thus demonstrate that (1)
there is a regime of reasonable parameter
choices for which one concludes that all possible
olfactory stimuli (i.e., all ~10%? of them) are
discriminable; and (2) there is another regime of
reasonable parameter choices for which one
concludes that the smallest possible number of
stimuli (i.e., only ~4500) are discriminable. The
only assumption required to obtain these esti-

the estimate has a minimum and maximum allowed
value (see Equation 1), an especially inconsistent
estimator can even produce any estimate within that

mates is that performance in new subjects is
similar to performance in the original subjects.
The fragility of the conclusion results from the
range. claim in (Bushdid et al., 2014) that a modest
DOI: 10.7554/elife.08127.003 . . . .
o ) . ) (if very interesting) correlation—between the
The following figure supplement is available for figure 1: L . .
discriminability of a pair of mixtures and the
overlap (fraction of shared components) of those
mixtures—is evidence that a particular degree of
mixture overlap defines a boundary that parti-
tions the discriminable from the indiscriminable
in a very high-dimensional space. Below, we
explore the consequences of this decision, and its implications for calculating the number of
discriminable olfactory stimuli.

Figure supplement 1. Fraction discriminated at which
statistical significance is reached.
DOI: 10.7554/eLife.08127.004

Explanation of the problems with the estimate

Recap of the basic framework

The framework’s logic is built on an analogy to color vision, where estimating the number of
discriminable colors requires knowing only two numbers: the size of the stimulus space (that is, the
range of visible wavelengths), and the minimally discriminable distance between a typical pair of
stimuli (Figure 4). Dividing the first number by the second amounts to asking how many discriminable
intervals can be ‘packed’ into the stimulus space, with that number providing an estimate of the
number of discriminable color stimuli.

Because olfactory stimuli do not have obvious physical dimensions analogous to wavelength,
olfaction is not amenable to an identical calculation. Instead, (Bushdid et al., 2014) established
a theoretical framework that yielded a similar calculation based upon the same underlying idea.
(Bushdid et al., 2014) proposed to divide the size of a investigator-determined olfactory stimulus
space by a data-determined variable representing resolution in this space. Instead of being
continuous, one dimensional, and defined by some intrinsic stimulus variable like wavelength, the
olfactory stimulus space was defined to be the discrete, high-dimensional space spanned by all
mixtures containing N = 30 different components (molecules) that could be assembled from a library
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Figure 2. Reproduction of the main result published in
(Bushdid et al., 2014), from analysis of raw data

made available in supplemental materials of (Bushdid
et al., 2014). Compare to Figures 3, 4 in that
publication. (A): Discriminability vs mixture overlap,
expressed as a percentage of the mixture size N. From

& ~51%
(vertical dashed line) as the critical value of mixture
overlap at which 50% of mixtures achieve ‘significant
discriminability’. (B): Estimated number of discriminable
mixtures z vs mixture overlap (expressed as a percent-
age of N) allowing discrimination. The plot is obtained
by regression and interpolation of results in A combined
with Equation 1, with colors corresponding to values of
N as shown in A. For a value of ~51%as derived in A,
one obtains the ‘trillions’ figure reported in (Bushdid
et al., 2014).

DOI: 10.7554/elife.08127.005

The following figure supplement is available for figure 2:

this analysis, (Bushdid et al., 2014) derives

Figure supplement 1. Reconstruction of percent
correctly discriminated using raw data from (Bushdid
et al., 2014).

DOI: 10.7554/elife.08127.006
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of C = 128 molecules; (Bushdid et al., 2014) also
considers the N = 10 and N = 20 cases, which we
ignore in this section with no loss of generality.
This space of possible mixture stimuli is astro-

nomically large (E’) owing to the proverbial

‘combinatorial explosion’, and each point in the
space corresponds to a specific multi-component
mixture.

One definition of distance between stimuli in
this space is the number of components D by
which the stimuli differ. For example, nearest
neighbors would be stimuli sharing all compo-
nents but one (D=1), and the most distant
points in this space would be stimuli differing in
all components (D=N).

(Bushdid et al., 2014) showed that discrimi-
nability of a stimulus pair tends to increase with
the distance D between the stimuli in that pair
(Figure 2A), and then argued for the existence of
a special distance d corresponding to the D at
which stimuli are ‘just discriminable’. In other
words, for D > d stimuli should more often than
not be considered discriminable and for D<d
they should more often than not be considered
indiscriminable. By calculating d, one could in
turn readily calculate the number of stimuli within
a distance D < d of a typical point in the stimulus
space using the provided formulas. Geometri-
cally, the set of stimuli with distance D <d from
a reference stimulus corresponds to a filled ‘ball’
of stimuli indiscriminable from the reference
stimulus at its center. Conversely, the reference
stimulus should be discriminable from stimuli
outside the ball. We could thus count the number
z of non-overlapping balls that can be packed
into the stimulus space, as proposed in (Bushdid
et al., 2014), by analogy to the example for color

vision:
z(d) =(,i) M

ball(d/2)

where ‘ball’ is defined as:

i ()

Equation 1 produces the final estimate z of
the number of discriminable stimuli. Note that
while this has been interpreted as ‘the answer’ to

the sphere packing problem in high dimensions, it is in fact only a best-case scenario (an upper
bound). The exact number of d-spanning spheres that can be packed in a discrete space defined by
a particular C and N has in fact only been computed for a few specific, modest cases of these values. In
general, it is only possible to report bounds for these values. This is discussed at more length in the
section. ‘An upper or a lower bound?’, below, as well in the supplemental materials.
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Table 1. Definitions of parameters

z Estimated number of discriminable olfactory stimuli

C Number of distinct compounds available to make mixtures

N Number of distinct compounds in a mixture

O Number of distinct compounds shared by a mixture pair

D Number of distinct compounds in one mixture of a pair that are not
shared by the other. (D=N-0)

class All mixture pairs with the same value of N and D.

d The value of D for which mixture pairs of a given N are more likely

than not to be discriminable at a rate significantly above chance.

DOI: 10.7554/elife.08127.010

C and N are fixed by experimenter choices, and d—the resolution-like term—is the only
quantity derived from data that is related to measured psychophysical performance. Note that for
C =128, N = 30, as used in (Bushdid et al., 2014), the largest and smallest possible values this
equation can produce are ~1.5x 10%’ (for d = 0) and ~4500 (for d = N), respectively. Assuming this
framework is conceptually unproblematic (but see Meister, 2015), the only question becomes: How
do we derive d from the data?

Derivation of the critical parameter d

Thresholding the fraction discriminated

A classic psychometric curve (Figure 4B), showing discriminability as a function of inter-stimulus
distance D, admits a few plausible ways to derive d. The simplest is to use a discriminability threshold,
such that d corresponds to the distance D at which the ‘fraction correct’ reaches a certain value. In
(Bushdid et al., 2014)'s three-alternative forced-choice experiments, chance responding would
produce a fraction correct of 3, so the appropriate threshold would be somewhere between } and 1.
This threshold choice would be arbitrary—we might say that a fraction correct of } reflects
discriminability, or alternatively we might choose % or any other value between  and 1.

If the psychometric curve is sufficiently steep near some value of D (Figure 4—figure supplement 1A
represents an ideal case) then the derived d will vary minimally over a wide range of choices for the
threshold. In this scenario, we might be confident that the d we derive is a truly meaningful measure of
resolution—it would be robust. If not (Figure 4—figure supplement 1C), it will be very fragile. We
explored this approach (Figure 4—figure supplement 2), and concluded that it does not suffice for
deriving a robust d.

Thresholding the fraction significantly discriminable
The approach actually used in (Bushdid et al., 2014) is instead to apply a threshold not to
the fraction discriminated (explored in Figure 4—figure supplement 2), but to the fraction
significantly discriminable. In other words, determine for which subjects (or alternatively, for which
classes of mixtures) the fraction discriminated is significantly greater than 1, i.e., for which subjects
the null hypothesis of chance discrimination can be rejected. To facilitate visualization of this step,
(Bushdid et al., 2014) re-plotted the summary data (fraction correctly discriminated) as fraction
significantly discriminable (Figure 2A). This view of the data provides a linear relationship between
distance D and the fraction significantly discriminable, which holds across all the values of N tested.
The relationship is much steeper than for fraction discriminable (compare Figure 2 and
Figure 4—figure supplement 2) because this hypothesis-testing step acts as a strong non-linear
threshold that exaggerates otherwise small differences in the data. An arbitrary choice of threshold
is required; (Bushdid et al., 2014) chose a threshold of 50% significantly discriminable, and
computed d from the fraction significantly discriminable using linear regression and interpolation.
Varying the threshold (i.e., 50%) itself (not shown), would change the computed d (and
consequently z), but this is not the largest issue. By introducing a hypothesis-testing step, the
d derived from Figure 2 now varies systematically with the number of subjects enrolled in the
study (and the number of mixtures tested), and with the choice of significance criterion a. This is
because each data point used to compute d becomes the binary result of a hypothesis test, each
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Figure 3. The estimation framework supports nearly any alternative conclusion, including the smallest and largest
estimates possible under the framework. (A): Heat map showing alternative conclusions reached for different
choices of T, the number of mixture pairs per class to test, and application of alternative significance threshold a for
discriminability, with the data from (Bushdid et al., 2014). Asterisks (*) show the parameter regime (T = 20 mixtures,
a=0.05) used in (Bushdid et al., 2014). Other values on each axis are chosen in a geometric progression around
those parameters. The contour in the lower right labeled 'All’ demarcates a regime in which one will conclude that
128
30
Equation 1). The contour in the upper left labeled ‘smallest possible’ demarcates a regime in which one will
conclude that the smallest possible number of stimuli are discriminable, that is, only z(d=N=30) <5000 of them.
The contour labeled ‘colors’ demarcates a regime in which one concludes that the number of discriminable olfactory
stimuli is the same order of magnitude as the number of discriminable colors. (B): Heat map similar to left, only with
number of subjects on the vertical axis. A choice of a=0.025 is necessary to obtain the estimate that (Bushdid et al.,
2014) reports for this analysis. (C): Colorscale for A and B, with reference landmarks.

DOI: 10.7554/eLife.08127.007

The following figure supplement is available for figure 3:

the largest possible number of mixture stimuli (i.e., all z(d=0)= ( ) >10% of them) are discriminable (see

Figure supplement 1. Steep, systematic, and non-asymptotic dependence of the estimate on sample size (S or T)
and threshold a for statistical significance.
DOI: 10.7554/elife.08127.008

of which depends critically on sample size and test specificity. Because d is then fed into an
expression (Equation 1) that explodes geometrically, the result is a recipe for producing any of
a range of estimates for z that one might choose. If one enlists more subjects or slackens the
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Table 2. Estimates of z, the number of discriminable olfactory stimuli, for different possible parameters
values, for the C = 128, N = 30 case used in (Bushdid et al., 2014)

A

# Discriminable stimuli (2) Significance threshold (@) # Tests per class (T)
2.02x 10" 0.05* 20*

456 x10°T 0.05* 5

1.54x10%% 0.05* 185

8.94x10° 0.001 20*

1.79x10* 0.01 15

B

# Discriminable stimuli (2) Significance threshold () # Subjects (S)
3.81x10" 0.025* 26*

4.56x 103t 0.025* 7

1.54x10%% 0.025* 135

3.47 x107 0.001 26*

2.98x10° 0.01 15

This recapitulates selected points from Figure 3.

* Indicates that the parameter value was used in (Bushdid et al., 2014). We assume here that new subjects perform
similarly to the original subjects.

Note that 4.56x 10% (1) and 1.54x 10% (}) are the smallest and largest possible values allowed by the framework
from (Bushdid et al., 2014).

DOI: 10.7554/elife.08127.009

significance criterion, a very large (even the largest possible) number will be obtained. If one
enlists fewer subjects or makes the significance criterion more strict, a very small (even the
smallest possible) number will be obtained. Figure 3—figure supplement 1 shows the explicit
dependence of the estimate on each of these quantities alone. Naturally, these can be varied in
tandem too, with even more dramatic consequences, as described above (Figure 3 and Table 2).

A hypothesis test is meant to assess the strength of evidence for or against a hypothesis (often
against a null hypothesis), not to make a point estimate. However, it may not be uncommon for
researchers to use hypothesis testing in the manner done in (Bushdid et al., 2014)—to count the
number or fraction of data points exhibiting a certain property. In many cases this may amount to
a venial statistical sin with (hopefully) benign consequences. But that is unfortunately not the case in
(Bushdid et al., 2014), due in part to the extremely steep dependence of z on d guaranteed by
Equation 1.

If one claims that an estimate is meaningful, it is fair to ask how vigorously would one have to
defend a specific choice of arbitrary experimental parameters to defend a particular order-of-
magnitude range around that estimate. Unfortunately, the systematic sensitivities exhibited here
severely undermine the plausibility and relevance of the estimate reported in (Bushdid et al., 2014).
Due to these sensitivities, one could pick almost any number of discriminable stimuli in advance, and
affirm this number using these or similar data. Ultimately, the absence of a robust d to characterize the
data is an insurmountable obstacle for the framework.

Building the stimulus space

The structure of the stimulus space

One might ask: what is the right way to calculate d in order to obtain a robust estimate of the number
of discriminable stimuli? Before heading down this road and devising alternative statistical
approaches, it is worth first clearly articulating the assumptions of a framework in which a single
variable plays such a special role. Under what conditions is it sensible to expect that plugging a single
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Figure 4. 'Sphere packing’ to estimate the number of
discriminable colors: the motivation behind the
framework in (Bushdid et al., 2014). (A): Hypothetical
example showing a range of visible wavelengths.
Relative to a reference stimulus (thick vertical tick mark),
extremely distant stimuli (green circle) in this space are
easy to discriminate, whereas extremely close stimuli
(red circle) may be impossible to discriminate, as they
are beyond the resolution of color vision. At some
critical inter-stimulus distance, d, stimuli will be ‘just
discriminable’ (black circle). A typical stimulus pair

on the space, separated by distance D, will tend to

be discriminable if D> d, and indiscriminable if D <d.
(B): This partitioning into discriminable and indiscrimin-
able sets is captured in the sigmoidal shape of the
psychometric curve plotting discriminability vs distance.
Knowing that an interval of length d on the space will
tend to span 'just discriminable’ stimuli, one can
calculate how many such intervals, z, can be ‘packed’
onto the space to estimate the number of discriminable
colors.

DOI: 10.7554/eLife.08127.011

The following figure supplements are available for
figure 4:

Figure supplement 1. Behavior of psychometric curves
for hypothetical data describing discriminability vs inter-
stimulus distance.

DOI: 10.7554/elife.08127.012

Figure supplement 2. Can the fraction discriminated be
used to measure d directly, without resorting to
hypothesis testing?

DOI: 10.7554/eLife.08127.013

Neuroscience

data-derived number (d) into Equation 1 will
produce a meaningful estimate of the number of
discriminable olfactory stimuli?

To gain some intuition into this, we can ask the
analogous question in the simplified visual
system example (Figure 4) that was used as the
principal motivation for the procedure. The
‘sphere packing’ calculation in this case naturally
involves measuring the resolution of perception
in terms of the stimulus, but its validity is not
a consequence of this measurement alone.
Rather, the procedure in Figure 4 is sensible
because the thing we are calling an independent
stimulus dimension (wavelength) is respected as
such by perception: we encounter monotonically
changing, non-redundant percepts as we move
from one extreme of the stimulus space to the
other. If we didn't—say, if the same percept
‘blue’ were experienced for several non-
overlapping disjoint intervals—the sphere pack-
ing formulation would fall apart. We might
observe that on average discriminability
improves with distance, but this would not be
evidence of a characteristic length scale that
partitions stimulus pairs into discriminable vs
indiscriminable sets.

Thus the sphere-packing framework is valid
only if the underlying geometry of stimulus space
(that the investigator has designed) aligns with
the geometry of perceptual space (as imple-
mented in neural circuitry). Formally, the map
from stimulus space to perceptual space needs
to be homeomorphic, or nearly so. See (Meister,
2015) for further insight on this issue.

Redundancy in the stimulus space
Instead of providing evidence for this homeomor-
phism, it was assumed in (Bushdid et al., 2014) for
the purposes of calculation that each component
of the molecular library (of size C = 128 in
[Bushdid et al., 2014]) spanned an informative
additional dimension for perception to explore:
each molecule in the library is treated as an
olfactory primary that is independent of all the
others. This is the assumption, codified in the
numerator of Equation 1, that allows for a massive
space of potential discriminable stimuli. Indeed,
the guaranteed runaway growth of the numerator
as molecules are added to the C-sized library was
offered in (Bushdid et al., 2014) as an argument
for why the reported ‘trillion’ figure is an under-
estimate—after all, C could always be higher.

It is worthwhile to quantify the behavior of the estimate as C changes. First, the estimate depends
geometrically on C, with a power law exponent of ~30 (Figure 5, blue line). In other words, if the
chemical library were doubled, the estimate z would increase by a factor of 23 under constant
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performance. If the component library were

o] # possible olfactory increased to the size of a standard flavor and

107 stimuli fragrance catalog (~2000 chemicals), the esti-

(j: 10° same performance mate would increase to z~10%", implying

:g 1 a unique olfactory percept for each carbon atom
gz A on earth.

2 g 10° Subjects’ performance could become worse

% %’ 1040: when mixtures are drawn from this larger, more

33 o] complete library, and we acknowledge that we

g w0 worst possible cannot know in advance what the newly calcu-

g & lated resolution d would be on the new stimulus

< o space. In other words, as the numerator of

10 Equation 1 increased, its denominator (given by

10° Equation 2) might conveniently grow propor-

102 103 10* 10° 100 tionally. Let us therefore assume that with

size of molecular library (C) a library of sufficient size, so many mixtures

become indiscriminable that the resolution
becomes as poor as the framework allows, with
d = N. Even in this edge case, if only mixtures

Figure 5. Explosive growth of the estimate z on the size
(O) of the molecular library. The number of possible

stimuli z that can be assembled by choosing N = differing in all components were ‘just discrimi-
30distinct molecules from a library of size C increases nable’, we would still calculate 10?" discrimina-
geometrically with C (black line). I a library of a different  ble stimuli. If C is increased to 10°, the smallest
size had been used, and similar subject performance possible number of discriminable percepts (un-

resulted, the estimated number of discriminable stimuli  dear the assumption of worst measurable perfor-
zwould grow along a similar trajectory (blue line). Even if mance, as above) is 106", or 10 million trillion
unique olfactory percepts for every carbon atom
on earth (Figure 5, red line). One may object
combinatorial explosion inherent in Equation 1. that the inflation of C here is an unfair critique,
DOI: 10.7554/cLife.08127.014 as the perceptual redundancy of molecules must

at some point provide an important constraint

on the size of the artificially constructed stimulus
space. Indeed, it has been reported that as few as thirty components are required to imbue most
mixtures with a common smell, even when there is no component overlap between the mixtures
(Weiss et al., 2012). But this is the essence of the problem with Equation 1: where does that point
lie, and why wasn’t the constraint important to consider for the original C = 128 molecular library?

performance deteriorated as C increased, the estimate
could never fall below the red line, which represents
worst-case performance (d = N). This results from the

An upper or a lower bound?
Even if one takes the estimate of d to be unimpeachable, the formula used to derive z does not
provide a lower bound as reported in (Bushdid et al., 2014). This much is suggested by the worst-
case behavior of Equation 1 as C grows. After all, worst case behavior should correspond to z = 1.
If one cannot discriminate anything (maximal d), then there is only one percept. Examining Equation 1
more closely, we see that it is a variant of the so-called Hamming bound for constant weight codes
(MacWilliams and Sloane, 1977). which is well-known to be an upper bound for an identically
formulated problem in the theory of error-correcting codes. It is, as suggested in (Bushdid et al.,
2014), an estimate derived from a hypothetical sphere-packing approach to filling the stimulus space,
but it is the largest possible value for the correct answer, not the smallest. Hence, according to the
Hamming bound, for d=N=30 the upper bound on the number of discriminable stimuli is 4561, and
we know the correct answer to be 1 (or 4, depending on conventions, see the Supplemental
Materials). Since the upper bound exceeds the correct answer, Equation 1, while not particularly tight
as an upper bound, is nonetheless not wrong, so long as we acknowledge that it is an upper and not
a lower bound. The same applies for all other values of d, including the one derived from the data in
(Bushdid et al., 2014).

Thus Equation 1, as used in (Bushdid et al., 2014), provides no insight into the lower bound for z,
with a lower bound being required to overturn conventional wisdom about the number of
discriminable stimuli. Instead, to obtain a lower bound one must dispense with the factor of 2 in
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Equation 1, yielding Levenshtein’s constant weight version of the so-called Gilbert-Varshamov bound
for error-correcting codes ([Levenshtein, 1971; MacWilliams and Sloane, 1977, Jiang and Vardy,
2004),see Supplemental Materials). A plot of the lower bound obtained in this manner is shown in
Figure 6B, along with the reconstructed upper bounds from (Bushdid et al., 2014) a, showing the
true bounded interval for z. Intuitively, this corrected lower bound reaches z = 1 for worst-case d,
implying sensibly that anosmics cannot discriminate any stimuli. In contrast, the upper bound
(reported as a lower bound in 1) is on the order of several thousand for worst case d, showing that it
cannot be a lower bound d; this can also be confirmed in Figure 4 of (Bushdid et al., 2014).

Avenues for improving the estimate

If one is seeking a conservative estimate of the number of discriminable stimuli in a perceptual space
whose organization and intrinsic dimensionality are poorly understood, it is arguably more
appropriate to use a model that accounts for the data with the smallest number of dimensions.
The massive estimates possible in the framework of (Bushdid et al., 2014) are an immediate
consequence of a definition of dimensionality driven by experimenter designation, not data.

We therefore propose an alternative framework: use experimental data to create a working map of
the perceptual space, and then apply the sphere-packing framework to that map, rather than to a map
of the stimulus space. In cognitive science, psychometrics, and marketing, subject responses to stimuli
are used to create maps of the underlying perceptual (or conceptual) representations of those stimuli.
These maps are characterized by the attribute that pairs of items which are considered intuitively to be
perceptually near (rated similar or difficult to discriminate) are nearer to one another on the map than
pairs of items which are perceptually more distant (rated dissimilar or easy to discriminate). There
are many algorithms for generating such maps, many of which have been used before in olfaction,
including variants of PCA (Zarzo and Stanton, 2006, Khan et al., 2007, Koulakov et al., 2011),
non-negative matrix factorization (NMF, [Castro et al., 2013]), and multi-dimensional scaling
(Mamlouk et al., 2003). While there are open questions in the generation of these maps (e.g., how
many dimensions should they have?), they all have the virtue that their accuracy can be checked (e.g.,
by examining the correlation between subjects’ indications of item pair dissimilarity and the distance

S 24| = Mixtures of N=10 o) T o]
S 10 == Mixtures of N=20 =] S 10°
E 18| = Mixtures of N=30 E E 18] bound
w -1 wv w -
< 10 o . 10 upper boun
8 2] | | 1]
10124 mmmmm e £ 102 mmm e
£ . : £ E 4
2 106 - : 2 2 10° lower bound
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1 1 1 . U 1 1 1 U 1 1 U 1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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Figure 6. Upper and lower bounds of the number of discriminable stimuli. (A): Number of discriminable olfactory stimuli as a function of the estimated
difference limen (the fractional mixture overlap allowing discrimination). This is simply the behavior of Equation 1 as a function of d, for the three values of
N used in (Bushdid et al., 2014); the red dot (in both A and C) corresponds to the value reported in (Bushdid et al., 2014). The smallest possible estimate
(thousands of stimuli) is indicated by the dotted line running the length of the abscissa (note also the y-intercept). As described in the text and in the
supplement, this graph in fact shows the behavior of the upper bound (the so-called Hamming bound) for the mathematical problem of sphere packing.
Compare with Figure 3D in (Bushdid et al., 2014). (B): Same plot as in A, only using the lower-bound for the same calculation. (C): Upper and lower
bounds of the sphere packing problem for the N = 30case (green lines from A and B, respectively. The dark gray bar shows the range of defensible
estimates under the sphere-packing framework, using the d calculated in (Bushdid et al., 2014). Using that d, the number of discriminable stimuli may be
as small as ~10,000, and is guaranteed to be no larger than ~1 trillion. Since the estimate of d is also fragile (Figure 3), the data may in fact support any
value in the shaded gray area.

DOI: 10.7554/el.ife.08127.015
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between that pair on the map), and thus the maps can be improved. Developing these maps may also
have the collateral benefit of revealing stimulus dimensions intrinsic to olfaction (if any), which could
constrain the experimental choice of a resolution to measure.

Unfortunately, it is difficult if not impossible to create these maps from the data discussed here,
because each mixture of a tested pair is used only once in (Bushdid et al., 2014), in that pair alone,
and never in any other pairs. Thus, there are no serial comparisons of the same mixture that could
be used to anchor a stimulus on the map relative to a stimulus against which it was not directly
compared experimentally. Thus, there is no way to compute distances between stimuli that do not
appear together in a tested pair. In other words, the structure of the perceptual space is severely
under-determined by the data. In future experiments such serial repetition of already-tested
mixtures would be required to build up a data set to which the proposed method could
be applied.
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Appendix 1

Proof of sample size dependence

Here, we provide a more detailed statistical argument describing the framework’s extreme
sensitivity to incidental parameters. The crux of the statistical issue is this: the framework could
only be valid if d, the estimated difference limen used in the calculation step, is a measure of
olfactory resolution that converges to the true value of this quantity as more data is collected,
that is, if it is consistent.

‘Significantly discriminable’ is a moving target dependent on sample size, choice of significance
criterion, and correction for multiple comparisons. And d is the only data-dependent value
used in subsequent calculations (Equation 1), Together, this guarantees that the estimate of z
in (Bushdid et al., 2014) is a moving target as well, dependent on these same parameters. d is
generated by testing a number of null hypotheses, and is closely related to the fraction of these
which are rejected. But the probability of and criteria for rejection of these null hypotheses
depends critically on sample size and «, the values that we explored in Figure 3 and Table 2.
Certainly, we would agree that there is nothing objectionable about the specific parameters
chosen in (Bushdid et al., 2014). However, there is nothing objectionable about many other
values for those parameters either.

In effect, calculating d is somewhat like judging whether a coin meets a cutoff for being fair
based on a series of tosses. It matters very much how many tosses one makes, and how much
deviation from chance one is willing to tolerate before calling a coin unfair. If you have no
particular reason to believe a coin is unfair, you might be disinclined to call it unfair if you
observe £ (60%) heads, but probably not if you observed £9% heads (also 60%). However, if you
own a casino, you might call 5100 heads in 10,000 (51%) evidence of an unfair coin. Whether the
coin is fair is not something we directly measure, but rather we have more or less evidence for
various degrees of fairness.

A similar situation applies in (Bushdid et al., 2014)'s analysis by considering its formal definition
of d (a definition we verified by reconstructing the critical figures from (Bushdid et al., 2014) in
Figure 2. d is defined as that inter-stimulus distance D for which 50% of subjects can
significantly discriminate a mixture class. By a mixture ‘class’ we denote the set of mixture pairs
for which each mixture has the same number of total components (N) and each pair has the
same number of distinct, non-overlapping components D (D=N - O, see Table 1). For
example, the mixture pair (ABC, ABC) would be a member of the class with N =3 and D = 1
distinct components. We focus here on calculations pertaining to the number of tests T per
class, but the same argument is readily translated over to the number of subjects S.

To assess significant discriminability from chance, (Bushdid et al., 2014) used a two-tailed
binomial test. Thus if a p-value is smaller than § then the subject is considered able to
significantly discriminate from pairs in the mixture class. The p-value is given by 1 minus the
cumulative binomial distribution function for n = T trials, k successes, and a probability of
success equal to 3, with k corresponding to the number of subjects discriminating correctly, and
1 to chance in a 3-way forced choice task. Thus, the subject’s discrimination performance is

significant if:
' K /TN /1N 72\ T
a/2 >1- Cdfbinomial (T7 k7§) = i§0< i ) (g) (§) (3)

For @=0.05, T=20 (as used in [Bushdid et al., 2014]), this inequality is satisfied for k> =11.
For each subject, k might be any value between 0 and 20 depending on olfactory acuity.

If k> =11 for more than 50% of subjects, then the value of D characterizing that mixture pair is
necessarily >d. If k> =11 for fewer than 50% of subjects, then D < d. If k> =11 for exactly 50%
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of subjects, then D = d. The actual estimate for d is obtained by regression in the spirit of
Figure 2.

What kind of subject can discriminate successfully 11 times out of 20? Consider a mixture class
Xn,p (characterized by N and D), and a subject performance of fyp, corresponding to the
proportion of mixtures correctly discriminated from a sample of size T. Note that fyp is simply
the abscissa of Figure 1 from (Bushdid et al., 2014). A subject with fyp=0.55 would get
k=T#fyp=11 out of T = 20 correct on average. So we can rewrite the inequality above as an

equation:
o’ T 7T\ 1\ 2\
2= 5 (1)) 6) 4

If the above equation is satisfied, then the subject will be considered to be on the boundary
between significantly discriminating and not significantly discriminating mixture pairs in the
class. If half of subjects perform better than fyp, and half less, then half of subjects will be
considered to significantly discriminate mixture pairs in the class (and half not), and so d will be
set equal to D. This is simply the definition of d.

The value fy p for which that equation is satisfied depends upon a and T. fyp is related to N and
D through the data, and so the value of D for which the equation is satisfied (i.e., D = d)
depends upon a, T, and the data. However, it is inappropriate for the discriminability limen to
depend on a and T in this way. As we showed above, this has serious consequences for the
estimate of d, and therefore also for the estimate of z. It is what makes z inconsistent.

Figure 1—figure supplement 1 shows the relationship between the critical fyp, T, and a. Note
that this relationship is independent of the data. The data only determine how fyp depends
upon D and consequently determines z. In summary, a smaller (larger) value of @ or T requires
a much higher (lower) value of fy p to satisfy the equation. This higher (lower) value of fy p might
only be found at a much larger (smaller) value of D, implying a much larger (smaller) value of
d and therefore a much smaller (larger) value of z.

With a sufficient number of subjects (or tests), even barely above chance performance can
produce estimates of z equal to the largest possible number of stimuli (Figure 3 and

Figure 3—figure supplement 1). In fact, this is guaranteed by Equation 4. The critical values
of fy,p required for statistical significance will asymptotically approach 1 (chance) as T
approaches infinity. The same principle applies to a consideration of changes to the number of
subjects S, instead of the number of tests. This illustrates the core of the problem.
Discriminating significantly above chance can be a very high bar or a very low bar depending on
the parameters of the experiments and the analysis, including S, T, and «a.

Can regularization solve this problem?

An alternative way to generate hypothetical data for larger values of S or T would be to imagine
mean discrimination performance converging to the true population value as sample size
increases. This has intuitive appeal, as surely the fraction discriminated should converge to %for,
say, identical stimuli, as the number of subjects approaches infinity. However, there is no clean
way to generate hypothetical data in such a way for non-trivial cases, such as data where the
mixtures are clearly discriminable, without knowing in advance what the population average is!
If one could partition mixture classes into clearly discriminable and indiscriminable, and assume
that the indiscriminable converge to § discriminated, and the discriminable to same value larger
than 3, the resulting plot would show a clear limen boundary where the data departed from 1.
However it is likely that all mixture classes have at least some discriminable pairs, and even if
that is only one pair out of a thousand, and only one subject out of a thousand can discriminate
it, we would declare the class to be discriminable and the limen d to be smaller than the D for
that class; we would likely do this for all classes, resulting in the conclusion (using Equation 1)
that all stimuli are discriminable. This occurs because we need d to be a property of the
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stimulus space in general, not a quirk of a small fraction of mixtures. But this kind of d'is elusive.
So deriving d in this way won't justify the use of the subsequent sphere-packing framework.

Correct bounds for the sphere packing problem

Here we elaborate on our claim that the ‘trillions’ figure is in fact an estimate for an upper
bound, and not an estimate for a lower bound, as advertised in the title of (Bushdid et al.,
2014), and throughout that report. The practical upshot of this is that even if one grants all
other aspects of the framework, it still makes an unremarkable claim, one concerning how many
olfactory stimuli humans can discriminate at most. Claiming to be at least 7 feet tall is a bold
claim indeed. In contrast, claiming to be at most 7 feet tall is not a claim worth making.
Providing a very high upper bound for the number of olfactory stimuli that humans can
discriminate does nothing to advance our understanding of human olfactory ability. An
expanded version of the following (including code for all calculations, and additional
supporting plots) can be found at http://github.com/rgerkin/trillion.

The minimum possible number of discriminable stimuli occurs when olfactory resolution is as
bad as possible. This occurs when d, the discriminability limen, is equal to N, the number of
components. This means that even when every component is substituted in a mixture,
discrimination is still hard or impossible. In the visual system, the equivalent situation would be
a discriminability limen that spans the entire range of visible wavelengths. Here, the ‘sphere
packing’ calculation for such a limen produces the sensible result that there is only one
resolvable color percept, only if one large ‘sphere’ of diameter d spans these wavelengths.

Curiously though, using Equation 1 (implemented exactly from [Bushdid et al., 2014]), and
setting d = N, we obtain the value 4561 (for N = 30), that is, we would estimate that there are
thousands of discriminable stimuli. This can be confirmed in (Bushdid et al., 2014) by
inspecting the y-intercept of its Figure 4C,D, or in our Figure 6A. Clearly this is problematic
since d = N should correspond to worst possible performance.

Perhaps this simply traces back to ambiguity in how the limen dis defined, and how end-points
are treated. For example, we could adopt the convention that a limen of 20 nm in color vision
means that stimuli separated by 20 nm are just discriminable; alternatively, that such stimuli are
the farthest that are still indiscriminable, which is slightly different. Along similar lines, one
interpretation of a limen of d = N is that stimuli are only discriminable when all components are
replaced. If this is the case, then the estimate should be equivalent to the number of ways
replacing all N components. For a library of size C, this can be done in £ =12~ 4 ways, which is
still clearly discordant with the result from Equation 1 (4561). While 4561 is not remarkably high,
it is clearly inconsistent with common sense. Furthermore, the edge-case, d = N behavior of
Equation 1 as C increases produces increasingly implausible results, which are independent of

the data: they are guaranteed by the equation (see Figure 5).

In an effort to understand the behavior of Equation 1, which is advertised in (Bushdid et al.,
2014) to provide the number of discriminable stimuli, one can ask ‘what value d> N is needed
to produce the result that there is only 1 discriminable stimulus?’ (that is, that only 1 'ball’
occupies the range of discriminable stimuli). The answer is that d must be equal to 2N before
Equation 1 will provide the result of 1 discriminable stimulus. But clearly d = 2N is impossible
since d < =N by definition. This indicates that there is potentially a spurious factor of two
somewhere in the calculation for the lower bound.

Correcting the lower bound

A common-sense interpretation of a scenario where no N-component mixtures differing in all
components (d = N, the largest possible limen) can be discriminated from one another is that
there is only one resolvable percept (not thousands). This interpretation will be secured using
the following corrected equation for the lower bound:
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(&

instead of the equation used in (Bushdid et al., 2014) and in the main text here as Equation 1:

(~)
N
2D =aid/2) ©
Figure 6 shows the behavior of the estimated number of discriminable stimuli, z, as a function
of the discriminability limen, d, for these two equations. Note three important features in the
behavior of Equation 5 (as seen in Figure 6B):

o First, for worst possible discrimination (d = N) the minimal number of discriminable stimuli is
1, which is sensible.

e Second, the maximal number of discrimianble stimuli is still equal to the total number of
mixtures that can be constructed from the library (as with the original Equation 6), which is
again sensible.

e Third, and most importantly, the number of discriminable stimuli estimated from the data is
now orders of magnitude smaller, and within the folk wisdom range.

Note that Equation 5 will still underestimate z, given d and the acceptance of the remainder of
the assumptions in the framework. After all, it is a lower bound. But similarly, Equation 6 will
always overestimate it. This is well-known from the theory of error-correcting codes, where
Equations 5, 6 represent lower and upper bounds on the solution to a homologous problem in
coding theory (MacWilliams and Sloane, 1977). These bounds are essentially the constant-
weight versions of the Gilbert-Varshamov and Hamming bounds, respectively, and have been
proven mathematically; specifically, the lower bound is due to Levenshtein (Levenshtein, 1971;
Jiang and Vardy, 2004), and the upper bound is slightly weaker version of that developed by
Freiman, Berger, and Johnson (Freiman, 1964, Agrell et al., 2000).
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