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Abstract Experimental evidence suggests the existence
of a negative feedback pathway between horizontal cells
and cone photoreceptors in the outer plexiform layer of
the retina that modulates the flow of calcium ions into
the synaptic terminals of cones. However, the underlying
mechanism for this feedback is controversial and there
are currently three competing hypotheses: the ephaptic
hypothesis, the pH hypothesis, and the GABA hypothesis.
The goal of this investigation is to demonstrate the ephaptic
hypothesis by means of detailed numerical simulations.
The drift-diffusion (Poisson-Nernst-Planck) model with
membrane boundary current equations is applied to a realis-
tic two-dimensional cross-section of the triad synapse in the
goldfish retina to verify the existence of strictly electrical
feedback, as predicted by the ephaptic hypothesis. The
effect on electrical feedback from the behavior of the bipolar
cell membrane potential is also explored. The computed
steady-state cone calcium transmembrane current-voltage
curves for several cases are presented and compared with
experimental data on goldfish. The results provide convin-
cing evidence that an ephaptic mechanism can produce the
feedback effect seen in experiments. The model and numeri-
cal methods presented here can be applied to any neuronal
circuit where dendritic spines are invaginated in presynaptic
terminals or boutons.
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1 Introduction

The amount of visual processing that occurs in the retina
before the signal reaches the visual cortex is often underesti-
mated. Various feedback networks are known to exist within
the retina, from the outer plexiform layer to the neuropil
of the inner plexiform layer. To unravel how visual proces-
sing takes place in the retina it is essential to understand how
these feedback mechanisms work. The most well-studied
feedback is in the triad synapse in the outer plexiform layer
(OPL) where rods, cones, bipolar, and horizontal cells inter-
act. We have shown in a previous study (Gardner et al. 2013)
how the geometric configuration of these cells gives rise
to an ephaptic feedback response, using a vastly simplified
rectangular geometry for the intersynaptic space. Here we
demonstrate the ephaptic hypothesis by means of detailed
numerical simulations in a realistic two-dimensional cross-
section of the goldfish triad synapse using the drift-diffusion
(Poisson-Nernst-Planck) model plus membrane boundary
current equations.

In the outer plexiform layer of the retina, the synaptic
terminals of rods and cones form synapses with two other
neuron types: horizontal cells and bipolar cells. The bipolar
cells carry visual information to the inner plexiform layer
and the horizontal cells form a network connected through
gap junctions that is confined to the OPL. Photoreceptors
translate visual information into electric currents through
changes in their membrane potentials. Horizontal cells in
turn respond to these changes, providing the input to bipolar
cells. The horizontal cell feedback to the cones may be
viewed as a signal processing mechanism that removes
low spatial and temporal frequencies to regulate release of
glutamate by cones. In this investigation, we will consider
a particular type of synapse in the OPL formed by a cone,
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a horizontal cell, and a bipolar cell, referred to as a triad
synapse.

The synaptic terminal of a cone—the cone pedicle—
forms a cavity-like structure with a highly convoluted geom-
etry. The pedicle is invaginated by multiple spines extending
from the dendrites of horizontal cells and bipolar cells. A
triad synapse is a synapse in which a bipolar cell, flanked
by two or more horizontal cells, comes into close proximity
with the cone pedicle. In a typical goldfish cone pedicle,
there are on average 5–16 triad synapses (Kamermans and
Fahrenfort 2004). An idealized diagram of a two dimen-
sional slice of a triad synapse is shown in Fig. 1. Note that
we are modeling only calcium channels (along the thick
red curve on the cone pedicle membrane) and hemichan-
nels (along the thick dark blue curve on the horizontal cell
membrane). The calcium transmembrane current flows into
the cone for the applied voltages of interest here, while the
hemichannel transmembrane current can flow into or out
of the horizontal cell. A simple equivalent circuit model is
given in Fig. 3 of Kamermans and Fahrenfort (2004).

Neurotransmission in the triad synapse is modulated by
the flow of calcium ions through the cone pedicle mem-
brane. The area inside the cone pedicle directly across from
the bipolar cell contains vesicles that release the neuro-
transmitter glutamate. The rate at which glutamate is being
released from the cone increases with the cone’s intracellu-
lar calcium level.

Fig. 1 Diagram of the triad synapse and physical locations of the
calcium channels and hemichannels (CP = cone pedicle, HC =
horizontal cell, and BC = bipolar cell). Lengths are in nm

We apply our model to the experiments performed by
Verweij et al. (1996) on goldfish retinas. In their experi-
mental setup, an isolated goldfish retina is saturated with
a 65 μm bright spot of red light. The spot is a constant
(non-flickering) test region in the presence and absence of a
full-field background illumination. The spot stimulates the
cone and the background illumination stimulates the rods,
which have gap junctions with the cones. The horizontal
cells have synapses with the cones (but not directly with
the rods). The calcium current through the cone membrane
is then measured with and without background illumination
using patch clamp techniques with a Ringer’s solution
designed to block the currents contributed by other ions.

In the absence of background illumination, cones depo-
larize, activating voltage-gated calcium channels in the
cone and thereby increasing the cone’s intracellular calcium
levels. This increase in turn triggers the cone membrane to
release more glutamate, which diffuses across the synaptic
cleft and binds to receptor sites on the horizontal cell. The
binding of glutamate activates cation-specific channels in
the horizontal cell, resulting in an inward current and depo-
larization of the postsynaptic membrane. On the other hand,
when illuminated the cone hyperpolarizes, leading to a
reduction in glutamate release. This reduction causes fewer
glutamate-gated channels in the horizontal cell to open and
therefore less current enters the horizontal cell, leading to a
hyperpolarization of the horizontal cell membrane.

It has been observed that when horizontal cells become
hyperpolarized the net result is an increase in intracellular
cone calcium levels, increasing glutamate release and
bringing the horizontal cell back to its resting state, imply-
ing a negative feedback pathway from horizontal cells to
cones (Kamermans and Fahrenfort 2004). The existence of
this feedback pathway is irrefutable (Byzov and Shura-Bura
1986; Verweij et al. 1996) although the underlying mecha-
nism has been a subject of heated debate for over twenty
years.

There are three competing hypotheses regarding the feed-
back mechanisms: the ephaptic hypothesis, the pH hypothe-
sis, and the GABA hypothesis. Experimental evidence exists
throughout the literature that both supports and contradicts
these three hypotheses, making it difficult to draw any sig-
nificant conclusions. The most recent research in this area
suggests that the ephaptic and pH effects are both present
but operate on different time scales (M. Kamermans, private
communication).

The goal of this investigation is to demonstrate the
ephaptic hypothesis through numerical simulations of the
microscopic drift-diffusion model with membrane bound-
ary current equations. This model is applied to a real-
istic two-dimensional cross-section of the triad synapse
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in the goldfish retina to verify the existence of strictly
electrical feedback, as predicted by the ephaptic hypothe-
sis, reproducing the shift in the experimental background
on/off cone calcium transmembrane current-voltage curve
(“calcium IV curve” for short) in Fig. 8 from a microscopic,
electro-diffusion viewpoint.

The prediction of the shift in the calcium IV curve proves
the ephaptic hypothesis in the context of a microscopic
model. Only the unshifted curve without background illu-
mination is calibrated by adjusting the four parameters in
the calcium channel model (13) within a physiologically
relevant range. Then the drift-diffusion model, with no fur-
ther adjustment, gives the correctly shifted IV curve with
background illumination, proving the ephaptic hypothesis.

1.1 The Ephaptic Hypothesis

The ephaptic hypothesis was first proposed in 1986 by
Byzov and Shura-Bura (1986) and has since been repeatedly
tested and modified. In short, the ephaptic hypothesis claims
that the negative feedback pathway from horizontal cells to
cones is electrical in nature. The specialized geometry of the
triad synapse contains narrow extracellular regions between
horizontal cells and the cone pedicle which have a relatively
large resistivity. Ionic current passing from these high-
resistance regions into the horizontal cell via ionic channels
causes the extracellular potential in the cleft to become more
negative. The increased difference in the cone membrane
potential in turn activates calcium channels. Horizontal cell
hyperpolarization under background illumination activates
inward currents enhancing the cone membrane depolariza-
tion, which ultimately leads to an increase in intracellular
calcium levels in the cone. In a voltage clamp experiment,
this increase in cone calcium levels under background illu-
mination is seen as a shift in the calcium IV curve to more
negative potentials.

This mechanism depends on active channels in the hori-
zontal cell membrane that are responsible for the inward
current. Byzov originally proposed the glutamate-gated
channels at the tips of the horizontal cell as a candidate for
this mechanism (Byzov and Shura-Bura 1986). However,
this idea was discarded when Kamermans and Spekreijse
(1999) tested it in goldfish using dinitroquinoxaline
(DNQX), a glutamate antagonist, to block the transmem-
brane current through the glutamate-gated channels. The
results showed no change in the shift in the calcium
IV curve. Instead of abandoning the ephaptic hypothesis,
Kamermans and colleagues instead modified it by propos-
ing that hemichannels in the tips of the horizontal cells
were responsible for the inward current. Hemichannels are
often considered as one-way gap junctions, in the sense that

they connect the interior of a cell to the extracellular space
with no voltage- or ligand-gating mechanism. This idea wa
driven by physiological studies that confirmed that such
channels are indeed located on the horizontal cell and are
in close proximity with the calcium channels and glutamate
release sites (Janssen-Beinhold et al. 2001). The modified
hypothesis has gained momentum in recent years due to
the successful experiments designed to test it. In one
experiment, Kamermans and colleagues performed identical
voltage clamp experiments on two groups of zebrafish: a
genetically modified group that lacked the codons neces-
sary to specify the hemichannel proteins and an unmodified
control group (Klaassen et al. 2011). The results showed
that the calcium IV curves in the modified subjects were not
shifted, while the curves for the control group were shifted,
a clear indication that the feedback is indeed dependent on
hemichannels.

Although the ephaptic hypothesis has enjoyed some
experimental success, it continues to be controversial.
Dmitriev and Mangel (2006) employed a circuit model to
argue that the resistance of the extracellular cleft must be
extremely large to induce the observed feedback and that
such an extreme resistance value is not physically reason-
able. However, the external resistivity is modeled success-
fully in Gardner et al. (2013), where it is shown that the
drift-diffusion model creates the correct resistances for the
ephaptic effect in the intersynaptic space along the sides of
the horizontal cell spine.

In addition, the other two hypotheses have received some
experimental support.

1.2 The pH Hypothesis

The pH hypothesis proposes that feedback is modulated
by changes in extracellular proton concentrations. Accord-
ing to this hypothesis, hyperpolarization of horizontal cells
alkalinizes the extracellular space which serves to alter
the gating mechanism of pH-sensitive calcium channels
in the cone membrane (Barnes et al. 1993; Hirasawa and
Kaneko 2003). However, the mechanism by which horizon-
tal cell polarization controls extracellular pH levels is still
unknown, although researchers have proposed many pos-
sible candidates (Kamermans and Fahrenfort 2004; Vessey
et al. 2005; Bouvier et al. 1992; Hirasawa and Kaneko
2003).

The pH hypothesis has a fair amount of experimental
support. It has been shown that extracellular pH levels can
affect voltage-sensitive calcium channels (DeVries 2001;
Prodhom et al. 1987). Further, experiments with goldfish,
tiger salamanders, and macaque monkeys have shown that
inhibition of extracellular pH fluctuations, induced by
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inserting high concentrations of artificial pH buffers, can
greatly affect the feedback responses (Babai and Thoreson
2009; Cadetti and Thoreson 2006; Davenport et al. 2008;
Hirasawa and Kaneko 2003; Vessey et al. 2005).

The validity of this hypothesis has also been questioned.
One study on the goldfish retina showed that feedback
responses were not altered in the presence of high concen-
tration of HEPES, an artificial pH buffer (Mangel et al.
1985; Kamermans and Fahrenfort 2004). It has also been
argued that the experimental techniques used to test the
hypothesis can have unintended side effects that would
affect other feedback mechanisms (Fahrenfort et al. 2009).
For example, the insertion of pH buffers can cause acidi-
fication of the intracellular horizontal cell solution, which
can inhibit hemichannel activity. Since the presence of pH
affects most biological processes, on varying time scales
from milliseconds to hours, it is difficult to prove experi-
mental support for a specific pH effect.

1.3 The GABA Hypothesis

The GABA hypothesis asserts that feedback is modu-
lated by a chemical neurotransmitter with γ -aminobutyric
acid (GABA) being the primary candidate (Dunlap and
Fischbach 1981; Gerschenfeld et al. 1980; Nelson et al.
1990; Piccolino 1995). The theory claims that horizon-
tal cells constantly release GABA which diffuses across
the extracellular space, binding to the cone membrane,
inhibiting calcium channels. Under background illumina-
tion induced hyperpolarization of the horizontal cell, the
quantity of GABA released by the horizontal cell is reduced,
allowing more calcium to flow into the cone.

The GABA hypothesis has received some experimental
support. A GABA synthesizing enzyme, known as glu-
tamic acid decarboxylase (GAD), has been found to exist in
some horizontal cells of certain animals (Chun and Wässle
1989; Guo et al. 2010; Johnson and Vardi 1998; Lam et al.
1979; Vardi et al. 1994). It has also been observed that
GABA release sites on horizontal cells act in a manner
consistent with the hypothesis, i.e., they are inhibited by
hyperpolarization (Ayoub and Lam 1985; Marc et al. 1978;
Schwartz 1982; 1987). Most importantly, several pharma-
cological studies of the catfish and carp retina have revealed
that application of GABA antagonists does indeed affect
feedback under background illumination (Lam et al. 1978;
Murakami et al. 1982a, b).

Most opposition to the GABA hypothesis stems from the
fact that Kamermans’ experiments were able to alter feed-
back responses in a GABA independent manner. It is most
likely that GABA does play some role in the overall process
but only in certain instances and for certain species. How-
ever, it seems clear that in the goldfish retina the feedback
is not dominated by a GABA-ergic mechanism.

1.4 Summary of Scientific Results

This investigation examines the ephaptic hypothesis by
means of numerical simulations of the goldfish triad
synapse at a microscopic level using the drift-diffusion
model with membrane boundary current equations.

The drift-diffusion code is a general purpose mem-
brane/ionic bath simulator, and has already been applied to
the potassium channel in Gardner and Jones (2011), and to
membrane currents between heart muscle cells, in addition
to the retina problem. The drift-diffusion model, as applied
to the triad synapse, is calibrated in Gardner et al. (2013)
to reproduce, in a simplified geometry, the experimental
calcium IV curves.

The main result of this investigation is verification of the
ephaptic hypothesis by reproducing the experimental shifted
background on/off calcium IV curves from a microscopic,
electro-diffusion simulation with only four parameters (all
in the calcium channel current model in equation (13)), with
the background illumination turned on and off by adjusting
the intracellular potential of the horizontal cell at the bottom
of the computational region. The experimental background
on/off calcium IV curves can be reproduced in a simpler
compartment model (Fahrenfort et al. 2009), but here we
derive this result from a local microscopic model. We also
predict that there are 50 % ON and 50 % OFF type bipolar
cells in the triad synapses (see Fig. 8).

Related simulations in a vastly simplified rectangular
geometry—using an extra parameter in the calcium channel
current model to implement turning the background illumi-
nation on and off—supporting the ephaptic mechanism are
presented in Gardner et al. (2013); there we showed that the
strength of the feedback response depends on the geometric
configuration of the postsynaptic processes within the triad
synapse.

Baer et al. (to appear) discuss the primary importance
of the ephaptic effect vs. the effect of GABA on time-
dependent simulations of calcium current responses of the
cat retina to steady and flickering test stimuli with illu-
minated or unilluminated background, in the context of a
multi-scale macroscopic two-dimensional model. In verte-
brate outer retina, changes in the membrane potential of
horizontal cells affect the calcium influx and glutamate
release of cone photoreceptors via a negative feedback
mechanism. This feedback has a number of important phys-
iological consequences. One is called background-induced
flicker enhancement in which the onset of dim background
enhances the center flicker response of horizontal cells. This
model, a partial differential equation system, incorporates
both the GABA and ephaptic feedback mechanisms on the
scale of an individual synapse and the scale of the recep-
tive field. Simulation results, in comparison with experi-
ments, indicate that the ephaptic mechanism is dominant in
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reproducing the major temporal dynamics of background-
induced flicker enhancement.

2 Drift-Diffusion Equations

To model the potential and the ionic currents in the triad
synapse of the retina, and to compute the Ca2+ currents
into the cone pedicle, we will use the drift-diffusion model.
The discrete distribution of ions is described by continuum
ion densities ni(x, t) for i = Ca2+, Na+, K+, and Cl−, and
the positive and negative ions flow in water in an electric
field E(x, t). The drift-diffusion model is derivable from
the Boltzmann transport equation plus Poisson’s equation;
thus additional forces and flows can be incorporated into
the model if experimentally observed. In the experimental
setup, a voltage bias is applied between the cone and the
horizontal cell by means of a patch clamp.

Consider a region such as that shown in the two dimen-
sional slice of the triad synapse in Fig. 1. This region can
be separated into four compartments: cone interior, hor-
izontal cell (HC) interior, bipolar cell (BC) interior, and
extracellular. Each compartment is assumed to be filled with
a salt solution containing the four common biological ions
Ca2+, Na+, K+, and Cl−, which we treat as continuous
charge, rather than individual ions. This continuum model
has been used successfully in many biological applications
(Eisenberg et al. 1995; Nonner and Eisenberg 1995; Gardner
et al. 2004; Gardner et al. 2013).

The presence of dissociated ions in a salt bath induces
a potential field, which in turn affects the flow of ions. To
model the evolution of the ion densities and the electric
potential, we utilize a system of partial differential equa-
tions known as the drift-diffusion or Poisson-Nernst-Planck
equations that hold in the various compartments. Treatment
of the state variables on the membranes and boundaries
will be discussed below. We neglect water flow effects
in this investigation; these effects (Eisenberg et al. 2010;
Mori et al. 2011) will be included in future work unless
experimental work demonstrates that osmotically induced
flows have no effect.

By requiring conservation of charge for each ionic
species, we obtain the continuity equation

∂ni

∂t
+ ∇ · fi = 0, (1)

where i = Ca2+, Na+, K+, and Cl−, and where fi is the flux
of the ith ionic species. Gauss’ Law relates the ion densities
to the electric potential φ:

∇ · (ε∇φ) = −ρ = −
∑

i

qini , E = −∇φ, (2)

where ε is the dielectric coefficient of water, ρ is the total
charge density, and qi is the ionic charge of species i. The
ionic flux has drift and diffusion terms

fi = ziμiniE − Di∇ni, (3)

where zi = qi/e, Di is the diffusion coefficient, and μi

the mobility coefficient of ionic species i. The diffusion
and mobility coefficients satisfy the Einstein relation Di =
μikBT/e where kB is the Boltzmann constant, T is the
absolute temperature of the medium, and e > 0 is the unit
charge. For most biological applications, T ≈ 310 K, a typ-
ical body temperature, so kBT ≈ 1/40 eV. The ionic flux fi
for each ionic species can be converted into electric current
densities ji via the simple relation

ji = qifi (4)

and the total current density j is

j =
∑

i

ji . (5)

In general, the parameters Di , μi , and ε can be treated
as functions of space. For our purposes, it is reasonable to
assume that these parameters are constant in the physical
domain of the problem. The constant values used for the
parameters are shown in Table 1. To summarize, the drift-
diffusion model reduces to the system

∂ni

∂t
= Di∇2ni + ziμi∇ · (n∇φ) (6)

∇2φ = −1

ε

∑

i

qini . (7)

This model forms a nonlinear parabolic/elliptic system of
Nspecies + 1 partial differential equations where Nspecies is
the number of ionic species included in the model. The state
variables of the model are ni and φ, which have Dirichlet
and/or Neumann boundary conditions.

It is known experimentally that the ion densities in bio-
logical fluids remain at constant values when far away from
cell membranes. The values of these constant ion densities

Table 1 Physical parameters used in the drift-diffusion equations

Parameter Value Description

DCa 0.8 nm2/ns diffusion coefficient of Ca2+

DCl 2 nm2/ns diffusion coefficient of Cl−

DNa 1.3 nm2/ns diffusion coefficient of Na+

DK 2 nm2/ns diffusion coefficient of K+

μCa 32 nm2/(V ns) mobility coefficient of Ca2+

μCl 80 nm2/(V ns) mobility coefficient of Cl−

μNa 52 nm2/(V ns) mobility coefficient of Na+

μK 80 nm2/(V ns) mobility coefficient of K+

ε 80 dielectric coefficient of water
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nbi are referred to as the bath densities and have been mea-
sured for several cases. For any given ionic species, the bath
densities can be very different depending on whether the
region is inside a cell or outside a cell. For example, a typ-
ical intracellular bath density for calcium in a mammalian
organism is nb,Ca = 10−4 mM, while a typical extracellular
bath density is nb,Ca = 2 mM. It is also known that biologi-
cal fluids maintain charge neutrality away from membranes.
To ensure this, we must enforce the condition
∑

i

qinbi = 0. (8)

However, the experimentally measured values of the four
common ionic species do not generally satisfy this relation
since there are a number of other charged molecules that
contribute. To get around this, we use the typical bath den-
sities for the positive ions and treat chloride as the general
negative charge carrier, setting

nb,Cl =
∑

i �=Cl

zinbi . (9)

The values for the bath densities are shown in Table 2.
Note that the values for nb,Cl are not typical and have been
adjusted to ensure charge neutrality.

The primary fluid dynamics is determined in each intra-
cellular or extracellular region by the dominant ions (see
Table 2), with a total density in each case of approximately
300 mM = 1.8×1020 ions/cm3 = 1.8×108 ions/μm3 (1 mM
= 6.022 × 1017 ions/cm3), typical of electron and hole den-
sities in semiconductor devices, where the drift-diffusion
model is known to give excellent results for 1 μm devices.
There may be some stochastic effects in the calcium cur-
rents, but the experimental data are not yet accurate enough
to see such effects.

2.1 External Boundary Conditions

On the external computational boundaries we use a mixture
of Dirichlet and Neumann boundary conditions. The most
natural boundary condition to use for the ion densities is
the Dirichlet condition ni = nbi , since it is reasonable to
assume the ion densities remain at their bath values away
from membranes. Along the y axis of symmetry (see Fig. 1),
we use the homogeneous Neumann boundary condition n ·

Table 2 Values of the intracellular and extracellular bath densities for
the four common biological ions used in the simulations

Ion Intracellular Extracellular

Ca2+ 10−4 mM 2 mM

Cl− 160 mM 146.5 mM

Na+ 10 mM 140 mM

K+ 150 mM 2.5 mM

∇ni = 0, where n is the outward pointing unit normal vector
to the boundary.

The boundary conditions for φ are chosen in a way that
attempts to mimic the voltage clamp experiment. In such an
experiment, micro-electrodes that are held at fixed poten-
tials are inserted at specific locations, usually one inside
the cone and the other “ground” electrode far away from
the cone. Along the top of the cone pedicle, UCP is set to
Vclamp , where Vclamp is the clamped potential, or holding
potential, with respect to ground.

Figure 2 gives the boundary conditions on the electro-
static potential along the outer boundary of the computa-
tional domain. The specifications of the Dirichlet boundary
values for the holding potential UCP and for the intracel-
lular potentials UBC and UHC are given in Section 3. Uref

denotes a fixed reference potential, which is not the abso-
lute physical ground φ = 0 since that is far away from the
computational region, but is taken to be Uref = −40 mV,

which equals U
off
HC with background illumination off. The

applied voltage across the triad synapse is UCP − Uref . A
homogeneous Neumann boundary condition on the normal
derivative n · ∇φ = 0 is imposed on the remainder of the
outer boundary.

HC

CP

B
C

UCP

UBC

UHC

Uref

Fig. 2 Boundary conditions on the electrostatic potential along the
outer boundary of the computational domain. UCP ,UBC , and UHC are
specified potentials, where CP = cone pedicle, BC = bipolar cell, and
HC = horizontal cell. Uref denotes a fixed reference potential. The
applied voltage across the triad synapse is UCP − Uref . A homoge-
neous Neumann boundary condition on the potential is imposed on the
remainder of the outer boundary
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The cone pedicle, horizontal cell, and bipolar cell are
not isopotential (see Barcilon et al. (1971) for nerve cells).
The potential at the top boundary of the cone pedicle (see
Fig. 2) is held at a fixed voltage UCP (Dirichlet boundary
condition), while the sides of the cone pedicle obey a homo-
geneous Neumann boundary condition on the potential. We
believe that these are physically relevant boundary condi-
tions reflecting the fact that the electrode within the cone
is very far “above” the computational region, and that the
voltage contours will therefore be approximately horizontal
lines near the top of the cone pedicle in the computational
region. The homogeneous Neumann boundary conditions at
the sides of the computational region mathematically repre-
sent a coupling to a reservoir at either side, extending the
cone pedicle to the left and right. In fact, the homogeneous
Neumann boundary condition on the densities as well as the
potential at the left boundary makes it an axis of symmetry.
At the right boundary, the Dirichlet boundary conditions on
densities represent a coupling to an infinite reservoir bath.
There must be a voltage gradient within the cone pedicle,
as well as within the horizontal cell and bipolar cell, as the
voltage far “above” the cone terminal falls toward ground
far “below” the computational region.

Large potential gradients do appear within the cone pedi-
cle and horizontal cell, as a consequence of the potential
differences applied across them in the boundary conditions,
which approximate the voltage clamp experimental setup.
The largest potential gradients actually occur across the
capacitative cell membranes (see Figs. 3, 4, 5 and 6), but
with an applied voltage of UCP − Uref (see Fig. 2) in
the range of [−40, 50] mV across the vertical domain of
0.9 μm, large potential gradients must appear within the

cone pedicle and horizontal cell except when the applied
voltage is small (|UCP − Uref | � 5 mV).

The 2D cross-section that we have chosen is reflected
about the vertical axis at the left boundary by our boundary
conditions (homogeneous Neumann boundary conditions
on the densities and the potential) to produce a good approx-
imation to the 3D problem, which has one bipolar cell and
two horizontal cell spines per triad synapse (the cone pedi-
cle has on average 20 triad synapses). The additional 3D
effects would generate only small corrections to the calcium
IV curves, yet the computational times would be prohibitive
for exploring the parameter space of the model. The cal-
cium IV curves computed with the 2D model agree with the
experimental calcium IV curves mainly to within 10 %, and
everywhere to within 20 %. Complete agreement is not to be
expected because of the theoretical argument presented by
Klaassen et al. (2011) that the shift in the calcium IV curve
under background illumination is a pure translation, and that
extraneous effects may have distorted the experimental shift
data in Verweij et al. (1996) (see further discussion below in
Section 3).

In future work we will extend the triad synapse simu-
lation region in Fig. 1 both “vertically” and “horizontally”
to include arrays of triad synapses. This extension of the
computational region in the 2D cross-sectional plane is
much more important physically than any 3D effects.

2.2 Membrane Boundary Conditions

Biological fluids maintain charge neutrality away from
membranes, though charge layers can accumulate on mem-
branes, violating the local neutrality. To resolve the charge

Fig. 3 Steady-state potential in
the synapse with UCP = 0 mV,
UBC = −60 mV, U

off
HC = −40

mV, and Uon
HC = −60 mV.

Lengths are in nm and the
potential is in mV
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Fig. 4 Steady-state potential in
the synapse with UCP = −20
mV, UBC = −60 mV,
U

off
HC = −40 mV, and

Uon
HC = −60 mV. Lengths are in

nm and the potential is in mV

layers, we must develop a model for the membrane surface
charge densities. Our approach to modeling the membrane
follows that of Mori et al. (2007) and Mori and Peskin
(2009). However, in their treatment, they use asymptotic
expansions with intermediate matching to avoid dealing
with charge layers, while we actually resolve these layers.

The main idea is to treat the membrane as a double-
valued sheet in three dimensions. We label the sides of
the membranes as + (intracellular) and − (extracellular).
The membrane is modeled as a capacitor with zero thick-
ness in which ions can accumulate on and/or pass through
either side, resulting in surface charge densities σ±

i , where
i indexes the four ionic species and the ± superscript indi-
cates the side of the membrane. The state variables of the

drift-diffusion model, ni and φ, are also defined on the
membrane and are double-valued, denoted as n±

i and φ±,
respectively. To obtain the membrane boundary conditions
for the ion densities, we relate the spatial charge densities
n±

i to the surface charge densities σ±
i :

σ±
i = qil

±
D

(
n±

i − n±
bi

)
, (10)

where n±
i is the ion density on the membrane, and where

l±D =
√

εkBT
∑

i q2
i n±

bi

(11)

is the Debye length, which is typically around 1 nm for
biological baths. Indeed, using the parameter values from

Fig. 5 Steady-state potential in
the synapse with UCP = −40
mV, UBC = −60 mV,
U

off
HC = −40 mV, and

Uon
HC = −60 mV. Lengths are in

nm and the potential is in mV
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Fig. 6 Steady-state potential in
the synapse with UCP = −60
mV, UBC = −60 mV,
U

off
HC = −40 mV, and

Uon
HC = −60 mV. Lengths are in

nm and the potential is in mV

Tables 1 and 2, we have that l+D ≈ 0.78 nm and l−D ≈ 0.79
nm.

Assuming that the total charge on the membrane is over-
all neutral, the ion densities on the membranes must satisfy
equation (1). Using this fact and the definition of electric
current density in equation (4), we have

∂σ±
i

∂t
= −l±D∇ · j±i ∓ jm,i , (12)

where jm,i is the transmembrane current. Note that we are
using the sign convention for jm,i in which current flowing
into a cell is negative and current flowing out of a cell is
positive.

For the triad synapse, we model the two channel types
in specific locations (see Fig. 1) on the membranes which
are important to ephaptic feedback: voltage-gated calcium
channels in the cone pedicle membrane and hemichannels
in the horizontal cell membrane (Kamermans et al. 2001;
Kamermans and Fahrenfort 2004).

We model the channel locations on the membranes as a
continuum of channels with a uniform density. The calcium
channels in the cone pedicle (CP) have been experimentally
shown to obey a nonlinear Ohm’s law with a voltage depen-
dent conductance function (Kamermans et al. 2001), which
we use in our model:

jm,Ca = gCa,CP (Vm − ECa,CP )

NsAm[1 + exp{(θ − Vm)/λ}] , (13)

where Vm = φ+ − φ− is the membrane potential, gCa,CP is
the maximum calcium conductance, ECa,CP is the reversal
potential of calcium, Ns is the average number of calcium
channel sites in a cone pedicle, Am is the surface area of
the section of the cone pedicle containing calcium channels,
θ is the half-activation potential, and λ is a curve fitting

parameter. The normalization factors Ns and Am require
some explanation. Equation (13) is motivated by experimen-
tal data, which measure actual currents instead of current
densities. Further, the experiments measure the total current
through a given cone pedicle, which contains many triad
synapses. On average, each pedicle has about Ns = 20 cal-
cium channel sites. In addition, the area Am of the region of
the cone pedicle containing calcium channels is estimated
to be about 0.1 μm2. Thus dividing the current by Am con-
verts it into a current density and dividing by Ns gives the
average current density over a given channel site.

The effects of the hyperpolarization of the horizontal cell
on the cone calcium transmembrane current are modeled at
a strictly local, microscopic level through the local values
of the electric potential, but the local values of the electric
potential change in response to a change in the boundary
condition UHC under background illumination.

The hemichannels in the horizontal cell are believed to
be non-specific cation channels (Kamermans and Fahren-
fort 2004) and thus we allow all cations to pass through
them. The current-voltage relationship for hemichannels is
experimentally observed to be linear, with an overall rever-
sal potential of zero and a constant conductance of ghemi

(Klaassen et al. 2011). However, this includes the current
from all cations and does not give any information about
individual ionic currents. A reasonable approach is then to
model each current density with a linear Ohm’s law:

jm,i = gi(Vm − Ei)/(NsAm) (14)

and impose the constraints

∑

i

gi = ghemi (15)
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Table 3 Hemichannel and other membrane parameters based on
experimental estimations

Parameter Value Description

ECa 50 mV reversal potential of Ca2+

ENa 50 mV reversal potential of Na+

EK −60 mV reversal potential of K+

gCa 1.5 nS conductance of Ca2+ current

gNa 1.5 nS conductance of Na+ current

gK 2.5 nS conductance of K+ current

ghemi 5.5 nS total hemichannel conductance

Cm 1 μF/cm2 capacitance per area

Am 0.1 μm2 HC spine head area

Ns 20 number of HC spines per synapse

and
∑

i

giEi = 0 (16)

to guarantee consistency with the experimental data. The
hemichannel parameters are shown in Table 3. The calcium
channel parameters are shown in Table 4.

The location of the calcium channels in the cone mem-
brane and the hemichannels on the horizontal cell mem-
brane are not arbitrary and in fact are located in such a
way as to enable ephaptic communication. Figure 1 shows
the regions in which experimentalists believe the channels
are located (Kamermans and Fahrenfort 2004), which we
also use in our model. In order to be able to compare our
results to empirical data, we must approximate the current
though an entire cone pedicle. To do this, we first compute
the average current density over the channel region via the
trapezoidal rule for numerical integration and then multiply
the result by the normalization factors Ns and Am. Thus the
calcium transmembrane current for an entire cone pedicle is
approximated as

ICa = NsAm


C

∫

C

jm,Ca ds, (17)

where C is the segment of the membrane containing the
calcium channels and 
C is the arc length of C.

The membrane boundary conditions for the state vari-
ables on the membrane are determined in the following way:

Table 4 Calcium channel parameters for equation (13) used in the
simulations

Parameter Value Description

gCa,CP 2.2 nS maximum conductance of calcium channels

ECa,CP 50 mV reversal potential of calcium

λ 3 mV kinetic parameter

θ 5 mV half-activation potential

assuming we have solved equation (12) at the given time,
we can use equation (10) to obtain the boundary conditions
for n±

i . Solving for n±
i gives

n±
i = n±

bi + σ±
i

qi l
±
D

. (18)

One of the boundary conditions for φ on the membranes can
be determined by treating the membrane as a capacitor with
a surface charge density σ and capacitance per unit area Cm,
resulting in the jump condition

[φ] ≡ φ+ − φ− = σ

Cm

, (19)

where σ is defined as

σ =
∑

i

σ+
i = −

∑

i

σ−
i . (20)

This definition assumes the membrane remains charge neu-
tral, yielding a second jump condition:

[nm · ∇φ] ≡ nm · ∇φ+ − nm · ∇φ− = 0, (21)

where nm is the unit normal vector of the membrane point-
ing from the − side to the + side. In other words, the
normal component of the electric field is continuous across
the membrane.

Lipid membranes and ionic channels usually have perma-
nent “built-in” charges independent of the electric potential,
which are functions of pH and calcium concentration. These
charge distributions can be incorporated (see Eisenberg
1996) into the model in future investigations.

3 Simulation Results

In this section, we present the results of simulations to
steady state of the triad synapse.

The TRBDF2 (Bank et al. 1985; Gardner et al. 2004;
Gardner and Jones 2011; Gardner et al. 2013) (trapezoidal
rule-backward difference formula second-order) method is
applied to the transport equations (6) and the ODEs (12). A
parallelized version of the Chebyshev SOR method is used
to solve Poisson’s equation (7). The steady-state solutions in
the figures are computed by simulating the time-dependent
equations to steady state.

The background illumination is simulated by adjusting
the potential UHC inside the horizontal cell (see Fig. 2).
As mentioned in the introduction, background illumination
hyperpolarizes the horizontal cell. Thus, in all simulations,
we use U

off
HC = −40 mV to simulate without background

illumination and Uon
HC = −60 mV to simulate with back-

ground illumination. The bipolar cell intracellular potential
is set to UBC = −60 mV in Figs. 3–6. The fixed reference
potential is held at Uref = −40 mV for all simulations.
The unknown biological parameters used for the calcium
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channel model (13) are shown in Table 4. These parameters
were tuned within a physiologically relevant range to get the
best fit with the experimental calcium IV curve for goldfish
(Fig. 11 of Verweij et al. (1996)) with background illumina-
tion off. Then the computed shifted calcium IV curve with
an illuminated background is a prediction of our model.

In Figs. 3–6, we show color plots of the steady-state
potential on a 600 × 900 grid, with and without background
illumination, using several different values for UCP . The
color scale for the potential varies over different ranges in
the figures in order to best portray the details of the poten-
tial variation, from −60 mV to {0, −20, −40, −40} mV in
Figs. 3–6, respectively. Note the hyperpolarization of the
horizontal cell membrane potential and the depolarization of
the cone pedicle membrane potential when the background
is illuminated. To get a good view of the charge layers, we
zoom in on the region containing the channels and plot the
steady-state charge density as shown in Fig. 7. This figure
verifies that the baths remain charge neutral away from the
membranes and the charge layers that accumulate on each
side are equal in magnitude but opposite in sign, i.e., the
membrane also maintains overall neutrality.

We produced current-voltage curves in Figs. 8 and 9
with and without background illumination to observe how
the model predicts the feedback response. The IV curves
are generated by varying the cone pedicle holding potential
UCP over the range [−80, 10] mV and then computing the
calcium current ICa or hemichannel current Ihemi in steady
state.

Good qualitative agreement is obtained between the com-
puted (Fig. 8) and experimental (Fig. 11 in Verweij et al.

(1996)) IV curves. Klaassen et al. (2011) present both exper-
imental data on zebrafish and a theoretical argument that the
shift in the calcium IV curve under background illumination
is a pure translation, and that extraneous effects may have
distorted the shift in Verweij et al. (1996)—our simulations
here indicate a pure translation shift.

The hemichannel IV curves in Fig. 9 are just straight
lines, as implied by the linear Ohm’s law (14). Also note
there is no experimental data on the hemichannel currents
with which to compare.

The addition of the bipolar cell slightly complicates
things. Some bipolar cells are known to depolarize under
background illumination (OFF bipolar cells) and others are
known to hyperpolarize under background illumination (ON
bipolar cells). To understand how the intracellular potential
of the bipolar cell affects the IV curves, we tried three dif-
ferent cases, which we label neutral, depolarized, and hyper-
polarized. For all three cases, we use U

off

BC = −60 mV with
no background illumination. When the background illumi-
nation is present, we use Uon

BC = −60 mV, −40 mV, and
−80 mV for the neutral, depolarized, and hyperpolarized
cases, respectively.

The bipolar cells are driven mainly by glutamate release
from cones (and possibly are inhibited by GABA release
from horizontal cells), so UBC could in principle be deriva-
ble from an extension of the model. These effects will be
investigated in future work.

Figures 8 and 9 show the results for all three cases
along with the vertical shifts in the calcium and hemichan-
nel IV curves. Figure 8 indicates that the shift in the
calcium IV curves is enhanced when the bipolar cell

Fig. 7 A zoomed-in view of the
steady-state charge density along
the portion of the membranes
containing ionic channels with
UCP = −20 mV, UHC = −40
mV, and UBC = −60 mV.
Lengths are in nm and the charge
density is in e·mM. Note that the
charge layers on opposite sides
of the membranes are equal in
magnitude but opposite in sign
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Fig. 8 Steady-state cone calcium transmembrane current-voltage
curves (current or current shift in pA vs. cone pedicle holding
potential in mV) for different bipolar cell intracellular potentials.
Top-left: Neutral bipolar cell. Top-right: Depolarized bipolar cell.

Bottom-left: Hyperpolarized bipolar cell. Bottom-right: Vertical differ-
ence of calcium IV curves for all three cases. Compare with Fig. 11 in
Verweij et al. (1996)
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Fig. 9 Steady-state horizontal cell hemichannel transmembrane
current-voltage curves (current or current shift in pA vs. cone pedi-
cle holding potential in mV) for different bipolar cell intracellular
potentials. Note that the hemichannel current can be either positive

or negative, depending on the holding potential. Top-left: Neutral
bipolar cell. Top-right: Depolarized bipolar cell. Bottom-left: Hyperpo-
larized bipolar cell. Bottom-right: Vertical difference of hemichannel
IV curves for all three cases
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is hyperpolarized and reduced when the bipolar cell is
depolarized.

4 Conclusion

We have formulated a detailed spatial model of the triad
synapse invaginating a cone pedicle in the outer plexi-
form layer of the retina. Our goal was to demonstrate the
validity of the ephaptic hypothesis as a feedback mecha-
nism. The results of our simulations have clearly verified
that the ephaptic mechanism correctly shifts the calcium IV
curve in the triad synapse when background illumination is
applied. This shift was produced simply by hyperpolarizing
the horizontal cell intracellular potential UHC . Note that the
feedback mechanism can be obtained by purely electrical
effects only if there are high resistance pathways that
electrically isolate the intersynaptic space.

As mentioned above, we obtained good qualitative agree-
ment with the experimental calcium IV curves in Fig. 11 in
Verweij et al. (1996). However our simulations support the
contention of Klaassen et al. (2011) that both experimental
data on zebrafish and a theoretical argument predict that the
shift in the calcium IV curve under background illumination
is a pure translation, and that extraneous effects may have
distorted the shift in Verweij et al. (1996).

The simulations of the triad synapse also demonstrate the
dependence of the feedback on the behavior of the bipolar
cell under background illumination. The neutral case, shown
in the upper left frame of Fig. 8 appears to be the closest
match with the experimental data from Verweij et al. (1996).
Since experiments measure currents for an entire cone
pedicle with multiple triad synapses, our results suggest that
there are approximately an equal number of ON and OFF
bipolar cells in a given pedicle, which serve to balance out
the shift effects. This result could be experimentally verified
by blocking the ON bipolar cells with a chemical inhibitor,
which would recover the contribution of the OFF biploar
cells only.

Previous models of the feedback phenomena in the triad
synapse have been compartment models in which each cell
and the extracellular space are treated as isopotential regions
(Byzov and Shura-Bura 1986; Dmitriev and Mangel 2006;
Usui et al. 1996; Smith 1995). As illustrated in Figs. 3–6,
our approach gives important information on the spatial
variation in the potential within the cells of the synaptic
circuit and the intersynaptic space. This information could
facilitate the formulation of more detailed and accurate
compartmental models of this or other complex invaginated
synapses.

The feedback mechanism addressed in this paper is
purely electrical. In Section 1.3 we discussed how the
inhibitory neurotransmitter GABA may also be a candidate

mechanism for feedback. In a multi-scale computational
approach, Baer et al. (to appear) propose that GABA plays
a secondary or modulatory role in the feedback with the
ephaptic mechanism being dominant. In a future study we
will test this hypothesis by investigating the GABA mecha-
nism at the microscopic ionic level using the drift-diffusion
model approach presented here.
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